Evaluation of the content-based packet scheduling policies
on the multithreaded multiprocessor network system

Kangbin Yim
Dept. of Information Security Engineering, Soonchunhyang University, Asan, 336-745 Korea
Tel : +82-41-530-1741 Fax : +82-41-530-1639 E-mail: yim@sch.ac.kr

Abstract:

In this paper, I propose a thread scheduling policy for faster packet processing on the

network processors with multithreaded multiprocessor architecture. To implement the proposed
policy, I derived several basic parameters related to the thread scheduling and included a new
parameter representing the packet contents and the features of the multithreaded architecture.
Through the empirical study using a network processor, I proved the proposed scheduling ploicy
provides better throughput and load balancing compared to the generally used thread scheduling

policy.

Keywords: Processor, Multiprocesscr, Multithreaded, Thread Scheduling

1. INTRODUCTION

According to the drastic increments of the Intemet speed
and the number of its users various network protocols and
the related services recently have been introduced, which
causes existing network equipments to be more powerful
and more adaptive. For network equipments to provide
more powerful performance, it is essential to process the
traffic using ASIC-based hardware platforms. However,
this approach rises up a serious drawback, lack of
adaptability over the progressively ongoing protocol
environment. Therefore, most systems have not been able
to get out of using general processors for the flexibility of
the software upgrades at the cost of performance
degradation. However, the general processor based traffic
processing has got stuck with the performance limitation
as giga-bit network environment is going to take its place.
Because of the reason many recent researches(1][2][3][10]
are focused on the specially designed network processor
that is both flexible to support new services and capable to
process high speed packet traffic.

General network processors implement the lowest part
of the packet processing task in hardware and leave the
rest part to be organized on the packet processing element.
As a high performance RISC processor, the packet
processing element is able to support new coming services
by accommodating new or modified program[10].
Moreover, a single network processor can embed multiple
packet processing elements for more powerful packet
processing each of which is implemented based on the
multithreaded architecture capable of supporting hardware
level context switching. Therefore, one single network
processor supports the number of threads equal to the
number of packet processing elements multiplied by the
number of threads per packet processing element.

The throughput of the packet processing service
implemented on the network processor is likely to partly
depend on the assignment of the functions to tasks and the
arrangement of the tasks to the threads. This means that
the performance of the packet processing system
exceedingly depends on the scheduling policy for the
threads processing the ingress packets.

Various researches on the scheduling algorithms have
been done in the multiprocessor environment for efficient

assignment of the tasks to processors. As an example,
Parallel Loop Scheduling[5] divides a job into several .oop
containing processes and assigns each of them to cach
processor. This kind of scheduling policies can be
categorized into two classes such as static scheduling and
dynamic scheduling. Static scheduling gives low overhead
but faces lack of load balancing and dynamic schedulir.g is
vise versa. Other proposed dynamic scheduling algoritims
including MSS[7], Pfaimess[6] and more have been trving
to take better position on the trade-off between the
overhead and the load balance. There have been more
scheduling algorithms than above, though most of them
considered only general purpose jobs ignoring the
characteristics of the packet processing tasks for the Figh
speed network processor.

This paper proposes a thread scheduling policy ‘hat
considers the characteristics of the inultithreaded
multiprocessor (MTMP) architecture of the network
processor as well as the characteristics of the packet
processing tasks on the network processors. The proposed
policy is implemented and evaluated on the IXP1200[12]
system that is cheap but incorporates most characteris:ics
of generic atchitecture of the network processor.

In this paper, various thread scheduling policies utilized
for network filtering systems are evaluated, including
Round-Robin, FCFS and the proposed FCFS with SOP
balancing algorithm, last of which may solve two
drawbacks of the previous two: thread blocking problem in
Round-Robin and SOP concentration problem in FCZS.
The main idea of the proposed scheduling policy is that the
processing workloads are different for different parts of a
packet on most network systems such as the firewall end
the intrusion detection system that incorporate the packet
filtering task. According to the result of the empirical
study the proposed policy gives gigabit performance for
more than 1024 bytes in size of a packet.

2. PACKET PROCESSING ON THE
NETWORK PROCESSOR

Designing of the packet processing software for MTMP
based network processor needs to consider its physical
features especially including the limitations of packet
processing time, the characteristics of the inter-process

39

communication mechanism, the restrictions on register
usage and so on. To maximize the packet processing
throughput on the MTMP architecture it is required for
scheduler to consider the workload of each thread as one
of the scheduling parameters. Therefore how the thread’s
workload represented is very important. Because the
workload of a thread depends on the type and size of the
packet they should affect the expression of the workload.

Figure 1 simplifies the flow of the ingress packets inside
the MTMP system. The size of the packet flowing into the
input queue varies according to the protocol type or the
size of a datagram on the data link layer (an L2 packet)
and is independent of the unit size of the data processed by
the threads on the processing elements. Generally, the unit
size of the data on general network processors, called the
MAC packet in this paper, is fixed and much smaller than
the size of the L2 packet.

s upmBs

opopHon Sovomsoscammeenree e e Vit

PEPPEPP N — a1
Output Queue broed 3

mmMs Ems Bus
cogogooRoo
PPPPRPPEFP

Fig. 1. Simplified packet processing on an MTMP system

Because of the reason above a single L2 packet is likely
to consist of multiple MAC packets, and they can be
classified into three different types such as SOP (Start Of a
Packet), MOP (Middle Of a Packet) and EOP (End Of a
Packet) according to their location within an L2 packet.
The SOP, as a leading-end MAC packet, generally takes
the header of the L2 packet and causes the processing
threads heavier workload than other two. The MOP, as
named, takes one of the interior partitions of an L2 packet
and causes a simple block transfer and least workload
except for the uncommon special applications. The EOP,
as a trailing-end MAC packet, is related to the execution
of the action from the decision of reject or forward.
Therefore, the workload relationship can be shown as
SOP>EOP>MOP and be represented as the effective
parameters for an efficient scheduling algorithm.

3. SCHEDULING POLICIES

The requirements for efficient packet processing on the
MTMP environment basically include minimum thread
contention delay, and sufficient thread workload
distribution for maximum processor utilization or packet
throughput. In this paper three scheduling policies are
defined according to the way how to deal with the state
and the load of each thread: static scheduling, minimum
load scheduling and predictive minimum load scheduling.
The scheduling policies are described in this section with
definition. The symbols used in the definitions are listed
on the table 1.

Static scheduling is the simplest scheduling policy

that uses fixed order for selecting threads for MAC
packets and provides lowest scheduling overhead.

40

Because the order is fixed the entire processing tasks
could be stalled by only a single busy thread. The
busy thread here means that the thread has heavier
workload than others. Therefore this policy can be
efficient in case the threads’ workloads are all the
same. However, the workloads are different for
different MAC packets especially for nowadays’
complex services.

Minimum load scheduling gives a new MAC packet
to the thread that has currently minimum processing
load. The information about the load is derived from
the thread’s state and the MAC packet type. To
estimate the total load of a processing element each
thread is checked for its load. Scheduler then selects
the minimum loaded processing element and assigns
the new MAC packet to one of the threads that may
currently have minimum load on the processing
element. All workload would be evenly distributed by
this approach and maximum throughput could be
achieved. However, this method has a drawback that
possibility that multiple threads could have the same
task on the same processing element would be
increased, which rises up the overhead of the
processing element. The scheduler is defined as the
following.

S,) =4 where ! =argmin{l, (z,):x, €7}
argmin{L (r,): 7, 1} when I, ={2}
argmin{L (r,):7, cT1,} when TL,#{@)}

.
L(z)=3 L)

Predictive minimum load scheduling assigns a new
MAC packet to the minimum loaded thread as in the
minimum load scheduling except that it minimizes the
possibility to select one of the threads on the same
processing element. In this method, a scheduling
parameter « is defined to penalize for the
overlaying the same task on the same processing
element as shown bellow.

S(IL)=u; where u' =argmin{L, (v,):u, €}
_{argmin{L,(ﬂ,):;r"cl'l} when T, =12}
" \argmin{L (z,): 7, c,} when I, =12}

L(n)= ilu(u;) +d(n)xa

Table 1. Symbols used in the definitions

symbol | description

N
0 Set of PEs (") 7 ¢ 17)
i=0
I, Set of PEs having more than one
idle thread at time t
PE 7 [g ith PE
L(z) Load of the i th PE
d\x, If the previous PE was 77, that
run the scheduler
u' j th thread on i th PE (¥, ,)
Thread J Hu ' e,

u L, (";) Load of the U ;

Scheduler | & Overhead of overlaying

4. EMPIRICAL RESULTS

The proposed scheduler was implemented on the Intel
IXP1200 that has a main processor and six processing
elements each of which has up to four hardware threads. In
this paper two processing elements were assigned for each
gigabit network interface. Packet processing throughput
was measured for various packet sizes. For each test on the
same size of packets, only same sized packets were
generated and fed to the network system to watch the
performance differences more vividly.

Figure 2 shows the results. In the figure, SS, ML and
MLP shows the results of static scheduling, minimum load
scheduling and predictive minimum load scheduling,
respectively. As I expected, the minimum load scheduling
and predictive minimum load scheduling provides better
performances compared to the static scheduling especially
for the packets ranging larger than 256bytes in size. For
the packets smaller than 256bytes, the performance results
of the two policies are not so much better than those of the
static scheduling because smaller packets are possibly to
have a large percentage of header fields and the
consideration of the packet content is not so effective.

In the figure, it is found that the static scheduling does
not show the monotonic increase proportional to the
packet size. Instead, it provides worse performance for the
packets twice the MAC packet in size because the system
implemented uses only two processing elements.

1000.00
900.00 F
800.00 |
700.00 f
600.00
500.00 ¢
400.00
300.00
200.00 |
100.00 +
0.00 ettt
9 Neg

< ©
¥ O O
LS S e BT 2 T 7o B S

Throughput {Mbps]

84
128
192
256
320

4

1

7
832 |

w O
——55 2 &
—i— ML

—h—MLP

1024 |

Packet Size

Fig. 2. Packet processing throughput for schedulers
5. CONCLUSION

This paper proposed a scheduling policy for the
multithreaded multiprocessor based network processor
system to maximize packet processing throughput by
distributing the packet processing load based on the
attribute of the packet content. To verify the performance
of the proposed policy it was implemented on a real
network processor with multithreaded multiprocessor
architecture. The empirical results of the implementation
show that the proposed policy provides better performance
than the existing policies especially for larger packets.

Acknowledgement: This paper is the result of the work
supported by 2004 Soonchunhyang University Research
Fund.

References

[11 A. Campbell, H. De Meet, M. Kounavis, K. Miki, J. Vicente,
and D. Villela, “A survey of programmable networks,”
ACM Computer Communications Review, Apr. 1999.

[2] P. Crowley, M. E. Fiuczynski, J. L. Baer, and B. N. Bershad,
“Characterizing processor architectures for programmable
network interfaces,” Proc. of the International Conference
on Supercomputing, 2000.

[3] Niraj Shah, Kurt Keutzer, “Network processors: Origin of
species,” Proc. of the Seventeenth International Symposium
on Computer and Information Sciences, Oct. 2002.

[4] T Wolf and M. A. Franklin, “Locality-aware predictive
scheduling for network processors,” Proc. of IEEE
International Symposium on Performance Analysic of
Systems and Software, Tucson, AZ, Nov. 2001.

[5] D.J. Lilja, “Exploiting the parallelism available in locps,”
IEEE trans. on computer, volume 27, no. 2, pp. 13-26,
1994,

[6] S. Baruah, J. Gehrke, and C.G. Plaxton, “Fast scheduling of
periodic tasks on multiple resources,” Proc. Of the 9th
International Parallel Processing Symposium, pp. 280-288,
Apr. 1995.

[77 K. P. Hung, N. H. C. Yung, and Y. S. Cheung,
“Multithreaded self-scheduling: Application of
multithreading on loop scheduling for distributed shared
memory multiprocessor,” IEEE International Conferencs on
Algorithms and Architectures for Parallel Processing,
Brisbane, Australia, Apr. 1995.

[8] C. Polychronopoulos and D. Kuck, “Gu:ded
self-scheduling: Practical scheduling scheme for parallel
supercomputers,” IEEE Trans. on Computers, Vol. C-36,
No. 12, pp. 1425-1439, Dec. 1987.

[9] Ten H. Tzen and Lionel M. Ni, “Trapezoid self-scheduling:
Practical scheduling scheme for parallel supercomputers,”
IEEE Trans. on Parallel and Distributed Systems, Vol. 4, No.
1, pp. 87-98, Jan. 1993.

[10] Nie, X,, Gazsi, L., Engel, F., Fettweis, G. “A new network
processor architecture for high-speed communicatioas,”
Proc. of IEEE Workshop on Signal Processing Systems,
Taipei / Taiwan, Oct. 1999.

[11] V. Srinivasan and G Varghese and S. Suri and M.
Waldvogel, “Fast and scalable layer four switching,” P-oc.
of ACM SIGCOMM, pp. 191-202, 1998

[12] Intel IXP1200 Network Processor Family, Hardware
Reference Manual, Inte] Corp. Dec. 2001

41

