• Title/Summary/Keyword: Multiple-valued

Search Result 144, Processing Time 0.03 seconds

Study on Construction of Multiple-Valued Logic Circuits Based on Reed-Muller Expansions (Reed-Muller 전개식에 의한 다치 논리회로의 구성에 관한 연구)

  • Seong, Hyeon-Kyeong
    • The KIPS Transactions:PartA
    • /
    • v.14A no.2
    • /
    • pp.107-116
    • /
    • 2007
  • In this paper, we present a method on the construction of multiple-valued circuits using Reed-Muller Expansions(RME). First, we discussed the input output interconnection of multiple valued function using Perfect Shuffle techniques and Kronecker product and designed the basic cells of performing the transform matrix and the reverse transform matrix of multiple valued RME using addition circuit and multiplication circuit of GF(4). Using these basic cells and the input-output interconnection technique based on Perfect Shuffle and Kronecker product, we implemented the multiple valued logic circuit based on RME. The proposed design method of multiple valued RME is simple and very efficient to reduce addition circuits and multiplication circuits as compared with other methods for same function because of using matrix transform based on modular structures. The proposed design method of multiple valued logic circuits is simple and regular for wire routing and possess the properties of concurrency and modularity of array.

Design of Multiple-Valued Logic Circuits on Reed-Muller Expansions Using Perfect Shuffle (Perfect Shuffle에 의한 Reed-Muller 전개식에 관한 다치 논리회로의 설계)

  • Seong, Hyeon-Gyeong
    • The KIPS Transactions:PartA
    • /
    • v.9A no.3
    • /
    • pp.271-280
    • /
    • 2002
  • In this paper, the input-output interconnection method of the multiple-valued signal processing circuit using Perfect Shuffle technique and Kronecker product is discussed. Using this method, the circuit design method of the multiple-valued Reed-Muller Expansions (MRME) which can process the multiple-valued signal easily on finite fields GF$(p^m)$ is presented. The proposed input-output interconnection methods show that the matrix transform is an efficient and the structures are modular. The circuits of multiple-valued signal processing of MRME on GF$(p^m)$ design the basic cells to implement the transform and inverse transform matrix of MRME by using two basic gates on GF(3) and interconnect these cells by the input-output interconnection technique of the multiple-valued signal processing circuits. The proposed multiple-valued signal processing circuits that are simple and regular for wire routing and possess the properties of concurrency and modularity are suitable for VLSI.

MVL-Automata for General Purpose Intelligent Model (범용 지능 모델을 위한 다치 오토마타)

  • 김두완;이경숙;최경옥;정환묵
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.11 no.4
    • /
    • pp.311-314
    • /
    • 2001
  • Recently, research on Intelligent Information Process has actively been under way JD various areas and gradually extended to be adaptive to uncertain and complex dynamic environments. This paper presents a Multiple Valued Logic Automata(MVL-Automata) Model, utilizing properties of difference in a Multiple Valued Logic function. That is, MVL-Automata is able to be autonomously adapted to dynamic changing since an input stling is mapped to the value of a Multiple Valued Logic function and the property of difference in a Multiple Valued Logic function is applied to state transition. Therefore, Multiple Valued Logic Automata can be widely applied to the modeling dynamically of changing environments.

  • PDF

A Study on Constructing the Multiple-Valued Logic Systems over Finite Fields using by the Decision Diagram (결정도(決定圖)에 기초(基礎)한 유한체상(有限體上)의 다치논리(多値論理)시스템구성(構成)에 관한 연구(硏究))

  • Park, Chun-Myoung
    • Journal of IKEEE
    • /
    • v.3 no.2 s.5
    • /
    • pp.295-304
    • /
    • 1999
  • This paper presents a method of constructing the Multiple-Valued Logic Systems(MVLS) over Finite Fields(FF) using by Decision Diagram(DD) that is based on Graph Theory. The proposed method is as following. First, we derivate the Ordered Multiple-Valued Logic Decision Diagram(OMVLDD) based on the multiple-valued Shannon's expansion theorem and we execute function decomposition using by sub-graph. Next, we propose the variable selecting algorithm and simplification algorithm after apply the each isomorphism and reodering vertex. Also we propose MVLS design method.

  • PDF

Hybrid FFT processor design using Parallel PD adder circuit (병렬 PD가산회로를 이용한 Hybrid FFT 연산기 설계)

  • 김성대;최전균;안점영;송홍복
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2000.10a
    • /
    • pp.499-503
    • /
    • 2000
  • The use of Multiple-Valued FFT(Fast fourier Transform) is extended from binary to multiple-valued logic(MVL) circuits. A multiple-valued FFT circuit can be implemented using current-mode CMOS techniques, reducing the transitor, wires count between devices to half compared to that of a binary implementation. For adder processing in FFT, We give the number representation using such redundant digit sets are called redundant positive-digit number representation and a Redundant set uses the carry-propagation-free addition method. As the designed Multiple-valued FFT internally using PD(positive digit) adder with the digit set 0,1,2,3 has attractive features on speed, regularity of the structure and reduced complexities of active elements and interconnections. for the mutiplier processing, we give Multiple-valued LUT(Look up table)to facilitate simple mathmatical operations on the stored digits. Finally, Multiple-valued 8point FFT operation is used as an example in this paper to illuatrates how a multiple-valued FFT can be beneficial.

  • PDF

STABILITY OF EQUIVALENT PROGRAMMING PROBLEMS OF THE MULTIPLE OBJECTIVE LINEAR STOCHASTIC PROGRAMMING PROBLEMS

  • Cho, Gyeong-Mi
    • Journal of the Korean Mathematical Society
    • /
    • v.35 no.2
    • /
    • pp.259-268
    • /
    • 1998
  • In this paper the stochastic multiple objective programming problems where the right-hand-side of the constraints is stochastic are considered. We define the equivalent scalar-valued problem and study the stability of the equivalent scalar-valued problem with respect to the weight parameters and probability mesures under reasonable assumptions.

  • PDF

Implementation of Multiple-Valued Adder and Multiplier Using Current-Mode CMOS (전류모드 CMOS에 의한 다치 가산기 및 승산기의 구현)

  • Seong, Hyeon-Kyeong
    • The KIPS Transactions:PartA
    • /
    • v.11A no.2
    • /
    • pp.115-122
    • /
    • 2004
  • In this paper, the multiple-valued adders and multipliers are implemented by current-mode CMOS. First, we implement the 3-valued T-gate and the 4-valued T-gate using current-mode CMOS which have an effective availability of integrated circuit design. Second we implement the circuits to be realized 2-variable 3-valued addition table and multiplication table over finite fields $GF(3^2)$, and 2-variable 4-valued addition table and multiplication table over finite fields $GF(4^2)$ with the multiple-valued T-gates. Finally, these operation circuits are simulated under $1.5\mutextrm{m}$ CMOS standard technology, $15\mutextrm{A}$ unit current, and 3.3V VDD voltage Spice. The simulation results have shown the satisfying current characteristics. The 3-valued adder and multiplier, and the 4-valued adder and multiplier implemented by current-mode CMOS is simple and regular for wire routing and possesses the property of modularity with cell array. Also, since it is expansible for the addition and multiplication of two polynomials in the finite field with very large m, it is suitable for VLSI implementation.

(Implementation of Current-Mode CMOS Multiple-Valued Logic Circuits) (전류 모드 CMOS 다치 논리 회로의 구현)

  • Seong, Hyeon-Gyeong;Han, Yeong-Hwan;Sim, Jae-Hwan
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.39 no.3
    • /
    • pp.191-200
    • /
    • 2002
  • In this paper, we present the method transforming the interval functions into the truncated difference functions for multi-variable multi-valued functions and implementing the truncated difference functions to the multiple valued logic circuits with uniform patterns using the current mirror circuits and the inhibit circuits by current-mode CMOS. Also, we apply the presented methods to the implementation of circuits for additive truth table of 2-variable 4-valued MOD(4) and multiplicative truth table of 2-variable 4-valued finite fields GF(4). These circuits are simulated under 2${\mu}{\textrm}{m}$ CMOS standard technology, 15$mutextrm{A}$ unit current, and 3.3V power supply voltage using PSpice. The simulation results have shown the satisfying current characteristics. Both implemented circuits using current-mode CMOS have the uniform Patterns and the regularity of interconnection. Also, it is expansible for the variables of multiple valued logic functions and are suitable for VLSI implementation.

MULTIPLE VALUED ITERATIVE DYNAMICS MODELS OF NONLINEAR DISCRETE-TIME CONTROL DYNAMICAL SYSTEMS WITH DISTURBANCE

  • Kahng, Byungik
    • Journal of the Korean Mathematical Society
    • /
    • v.50 no.1
    • /
    • pp.17-39
    • /
    • 2013
  • The study of nonlinear discrete-time control dynamical systems with disturbance is an important topic in control theory. In this paper, we concentrate our efforts to multiple valued iterative dynamical systems, which model the nonlinear discrete-time control dynamical systems with disturbance. After establishing the validity of such modeling, we study the invariant set theory of the multiple valued iterative dynamical systems, including the controllability/reachablity problems of the maximal invariant sets.

Realization of Multiple-Control Toffoli gate based on Mutiple-Valued Quantum Logic (다치양자논리에 의한 다중제어 Toffoli 게이트의 실현)

  • Park, Dong-Young
    • Journal of Advanced Navigation Technology
    • /
    • v.16 no.1
    • /
    • pp.62-69
    • /
    • 2012
  • Multiple-control Toffoli(MCT) gates are macro-level multiple-valued gates needing quantum technology dependent primitive gates, and have been used in Galois Field sum-of-product (GFSOP) based synthesis of quantum logic circuit. Reversible logic is very important in quantum computing for low-power circuit design. This paper presents a reversible GF4 multiplier at first, and GF4 multiplier based quaternary MCT gate realization is also proposed. In the comparisons of MCT gate realization, we show the proposed MCT gate can reduce considerably primitive gates and delays in contrast to the composite one of the smaller MCT gates in proportion to the multiple-control input increase.