(Implementation of Current-Mode CMOS Multiple-Valued Logic Circuits)

전류 모드 CMOS 다치 논리 회로의 구현

  • 성현경 (상지대학교 컴퓨터정보공학부) ;
  • 한영환 (상지대학교 컴퓨터정보공학부) ;
  • 심재환 (인하대학교 전자공학과)
  • Published : 2002.05.01

Abstract

In this paper, we present the method transforming the interval functions into the truncated difference functions for multi-variable multi-valued functions and implementing the truncated difference functions to the multiple valued logic circuits with uniform patterns using the current mirror circuits and the inhibit circuits by current-mode CMOS. Also, we apply the presented methods to the implementation of circuits for additive truth table of 2-variable 4-valued MOD(4) and multiplicative truth table of 2-variable 4-valued finite fields GF(4). These circuits are simulated under 2${\mu}{\textrm}{m}$ CMOS standard technology, 15$mutextrm{A}$ unit current, and 3.3V power supply voltage using PSpice. The simulation results have shown the satisfying current characteristics. Both implemented circuits using current-mode CMOS have the uniform Patterns and the regularity of interconnection. Also, it is expansible for the variables of multiple valued logic functions and are suitable for VLSI implementation.

본 논문에서는 다변수 다치 논리함수에 대하여 구간함수를 절단 차분 함수로 변환하는 방법을 제시하였고, 절단 차분 함수를 전류모드 CMOS에 의한 전류 미러 회로와 금지회로를 사용하여 일정한 패턴을 갖는 다치 논리회로로 구현하는 방법을 제시하였다. 또한 제시한 방법을 2변수 4치 MOD(4) 가산 진리표와 2변수 4치 유한체 GF(4)상의 승산 진리표를 실현하는 회로의 구현에 적용하였다. PSpice 시뮬레이션을 통하여 이 회로들에 대하여 동작특성을 보였다. 회로들의 시뮬레이션은 2㎛ CMOS 표준 기술을 이용하였고, 단위 전류를 15㎂로 하였으며, 전원전압은 3.3V를 사용하였다. 본 논문에서 제시한 전류모드 CMOS에 의해 구현된 회로들은 일정한 패턴, 상호연결의 규칙성을 가지며, 다치 논리함수의 변수의 확장성을 가지므로 VLSI 실현에 적합할 것으로 생각된다.

Keywords

References

  1. C. M. Allen and D. D. Givone, 'A Minimization Technique for Multiple-Valued Logic Systems,' IEEE Trans. Comput., vol. C-17, pp. 182-184, Feb. 1968 https://doi.org/10.1109/TC.1968.227407
  2. D. C. Rine, Computer Science Multiple-Valued Logic Theory and Applications. Armsterdam, Netherland, North-Holland, 1977
  3. Z. G. Vranesic, E. S. Lee and K. C. Smith, 'A Many-Valued Algebra for Switching Systems,' IEEE Trans. Comput., vol. C-19, pp. 964-971, Oct. 1970 https://doi.org/10.1109/T-C.1970.222803
  4. K. C. Smith, 'The Prospects for Multi-Valued Logic: a Technology and Application View,' IEEE Trans. Comput., vol. C-30, pp. 619-634, Sept. 1981 https://doi.org/10.1109/TC.1981.1675860
  5. S. L. Hurst, 'Multiple-Valued Logic-Its Status and Its Future,' IEEE Trans. Comput., vol. C-33, pp. 1160-1170, Dec. 1984 https://doi.org/10.1109/TC.1984.1676392
  6. K. C. Smith, 'Multiple-Valued Logic : a Tutorial and Application,' IEEE Computer, pp. 17-27, Apr. 1987 https://doi.org/10.1109/2.48
  7. S. P. Onneweer and H. G. Kerkhoff, 'Current Mode CMOS High-Radix Circuits,' Proc. of 16th International Symposium on Multiple-Valued Logic, Virginia, USA, pp. 60-69, May 1986
  8. J. T. Butler, J. H. Pugsley and C. B. Silio Jr., 'High-Speed Multiplier uses 50 Percent Less Chip Area and Power,' IEEE Computer, vol. 20, No. 8, pp. 109-110, Aug. 1987
  9. T. Yamakawa, T. Miki and F. Ueno, 'The Design and Fabrication of the Current Mode Fuzzy Logic Semicustom IC is Standard CMOS IC Technology,' Proc. of 15th International Symposium on Multiple-Valued Logic, Kingston, Ontario, Canada, pp. 76-82, May 1985
  10. K. W. Current, 'Current-Mode CMOS Multiple-Valued Logic Circuits,' IEEE J. Soild-State Circuits, vol. 29, No. 2, pp. 95-107, Feb. 1994 https://doi.org/10.1109/4.272112
  11. C. Moraga and W. Wang, 'Evolutionary Methods in the Design of Quaternary Digital Circuits,' Proc. of 28th International Symposium on Multiple-Valued Logic, Fukuoka, Japan, pp. 89-94, May 1998 https://doi.org/10.1109/ISMVL.1998.679309
  12. B. Fraser and G. W. Dueck, 'Multiple-Valued Logic Minimization using Universal Literals and Cost Tables,' Proc. of 28th International Symposium on Multiple-Valued Logic, Fukuoka, Japan, pp. 239-244, May 1998 https://doi.org/10.1109/ISMVL.1998.679449
  13. M. Abd-El-Barr and A. Al-Mutawa, 'A New Improved Cost-table-based Technique for Synthsis of 4-valued Unary Functions Implementation using Current-Mode CMOS Circuits,' Proc. of 31st International Symposium on Multiple-Valued Logic, Warsaw, Poland, pp. 15-20, May 2001 https://doi.org/10.1109/ISMVL.2001.924549
  14. J. Shen, M. Inaba, K. Tanno and O. Ishizuka, 'Multi-Valued Logic Pass Gate Network Using Neuron-MOS Transistor,' Proc. of 30th International Symposium on Multiple-Valued Logic, Portland, Oregon, U.S.A., pp. 15-20, May 2000 https://doi.org/10.1109/ISMVL.2000.848594
  15. H. Y. Teng and R. J. Bolton, 'The Ues of Arithmetic Operators in a Self-Restored Current-Mode CMOS Multiple-Valued Logic Design Architecture,' Proc. of 31st International Symposium on Multiple-Valued Logic, Warsaw, Poland, pp. 100-105, May 2001
  16. M. Davio and J. P. Deschamps, 'Synthesis of Discrete Functions using I2L Technology,' IEEE Trans. Comput., vol. C-30, pp. 653-661, Sept. 1981 Davio, M.;Deschamps, J.-P. 10.1109/TC.1981.1675863
  17. K. W. Current, 'A CMOS Quaternary Threshold Logic Full Adder Circuit with Transparent Latch,' Proc. of 20th International Symposium on Multiple-Valued Logic, Charlotte, North-Carolina, USA, pp. 168-180, May 1990 https://doi.org/10.1109/ISMVL.1990.122616
  18. K. Lei and Z. G. Vranesic, 'On the Synthesis of 4 Valued Current Mode CMOS Circuits,' Proc. of 21st International Symposium on Multiple-Valued Logic, Victoria, B.C., Canada, pp. 147-155, May 1991
  19. O. Ishizuka, H. Takarabe, Z. Tang and H. Matsumoto, 'Synthesis of Current-Mode Pass Transistor Networks,' Proc. of 21st International Symposium on Multiple-Valued Logic, Victoria, B.C., Canada, pp. 139-146, May 1991 Ishizuka, O.;Takarabe, H.;Tang, Z.;Matsumoto, H. https://doi.org/10.1109/ISMVL.1991.130719
  20. Proc. of 21st International Symposium on Multiple-Valued Logic Synthesis of Current-Mode Pass Transistor Networks O.Ishizuka;H.Takarabe;Z.Tang;H.Matsumoto