(A Study on the Design of Analog Converter Using Neuron MOS)

뉴런모스를 이용한 아날로그 변환기 설계에 관한 연구

  • Published : 2002.05.01

Abstract

This paper describes a 3.3 (V) low power 4 digit CMOS quaternary to analog converter (QAC) designed with a neuron MOS($\upsilon$MOS) down literal circuit block and cascode current mirror source block. The neuron MOS down literal architecture allows the designed QAC to accept not only 4 level voltage inputs, but also a high speed sampling rate quaternary voltage source LSB. Fast settling time and low power consumption of the QAC are achieved by utilizing the proposed architecture. The simulation results of the designed 4 digit QAC show a sampling rate of 6(MHz) and a power dissipation of 24.5 (mW) with a single power supply of 3.3 (V) for a CMOS 0.35${\mu}{\textrm}{m}$ n-well technology.

본 논문에서는 뉴런모스를 사용한 다운리터럴(Down-Literal) 회로블록과 전류미러 스위치 블록을 사용하여 3.3(V)의 저전력과 고속에서 동작하는 4치 아날로그 변환기(Quartenary to Analog Converter : QAC)를 설계하였다. 다운리터럴 회로를 사용하여 4치입력을 전류미러 스위치의 제어신호로 전환하고 전류미러 스위치는 4치입력에 해당하는 아날로그 신호를 출력한다. 제안된 구조로 설계된 QAC는 고속의 정착시간과 저전력소모의 특징을 가지며 CMOS 0.35㎛ n-well 공정을 사용한 실험 결과를 통해서 3.3(V)의 단일 전원을 사용하여 6MHz의 표본속도와 24.5mW의 전력소모를 확인한다.

Keywords

References

  1. S. L. Hurst, 'Multiple-Valued logic-its status and its future,' IEEE Trans. Comput., vol. C-33, pp. 1160-1179, Dec. 1984 https://doi.org/10.1109/TC.1984.1676392
  2. K. C. Sith, Multiple-Valued logic : a tutorial and appreciation, IEEE Computers, vol. 21, pp. 17-27, Apr. 1988 https://doi.org/10.1109/2.48
  3. M. Kameyama, 'Toward the Age of the Beyond-Binary Electronics and System,' ISMVL 90, pp. 162-166, North Carolina U.S.A., May. 1990 https://doi.org/10.1109/ISMVL.1990.122613
  4. D. Etiemble, On the performance of the Multivalued integrated Circuits : Past, Present and Future, Proc. 22nd ISMVL pp. 154-164, Sendai Japan, May 1992 https://doi.org/10.1109/ISMVL.1992.186790
  5. K. C. Smith and P. G. Gulak, 'Prospects for multiple-valued intergrated circuits,' Special issue on multiple-valued intergrated circuits IEICE TRANS. ELECTRON., vol. E76-C, no. 3, pp. 372-382, Mar. 1993
  6. T. Hanyu, M. Kameyama, T. Higuchi, 'Prospects of Multiple-Valued VLSI Processors,' IEICE Trans. Electron, vol. E76-C, No. 3, pp. 383-392, March 1993
  7. George Epstein, Multiple-valued logic design an introduction, Institute of Physics Publishing Ltd. 1993
  8. T. Shibata and T. Ohmi, A Functional MOS Transistor Featuring Gate-Level Weighted Sum and Threshold Operations, IEEE Electron Devices, vol. 39, 6, June 1992 https://doi.org/10.1109/16.137325
  9. J. Shen and K. Tanno and O. Ishizuka and Z. Tang, Application of Neuron-MOS to Current-Mode Multi-Valued Logic Circuits, Proc. 28th ISMVL pp. 128-133, Fukuoka Japan, May 1998 https://doi.org/10.1109/ISMVL.1998.679320
  10. J. Shen and K. Tanno and O. Ishizuka, Down Literal circuit with Neuron-MOS Transistors and Its Applications, Proc. 29th ISMVL pp. 180-185, Freiburg Germany, May 1999 https://doi.org/10.1109/ISMVL.1999.779714
  11. The Engineering Staff of Analog Devices, Analog-Digital Conversion Handbook, Prentice-Hall, Inc. 1986
  12. F. Coughlin and F. Driscoll, Operational Amplifiers & Linear Integrated Circuits, Prentice Hall, Inc. 1998
  13. Sedra and Smith, Microelectronic Circuits, Saunders College Publishing, 1990
  14. David A. Johns and Ken Martin, Analog Integrated Circuit Design, John Wiley & Sons, Inc, 1997