• Title/Summary/Keyword: Multiple images

Search Result 1,397, Processing Time 0.029 seconds

Precise Detection of Car License Plates by Locating Main Characters

  • Lee, Dae-Ho;Choi, Jin-Hyuk
    • Journal of the Optical Society of Korea
    • /
    • v.14 no.4
    • /
    • pp.376-382
    • /
    • 2010
  • We propose a novel method to precisely detect car license plates by locating main characters, which are printed with large font size. The regions of the main characters are directly detected without detecting the plate region boundaries, so that license regions can be detected more precisely than by other existing methods. To generate a binary image, multiple thresholds are applied, and segmented regions are selected from multiple binarized images by a criterion of size and compactness. We do not employ any character matching methods, so that many candidates for main character groups are detected; thus, we use a neural network to reject non-main character groups from the candidates. The relation of the character regions and the intensity statistics are used as the input to the neural network for classification. The detection performance has been investigated on real images captured under various illumination conditions for 1000 vehicles. 980 plates were correctly detected, and almost all non-detected plates were so stained that their characters could not be isolated for character recognition. In addition, the processing time is fast enough for a commercial automatic license plate recognition system. Therefore, the proposed method can be used for recognition systems with high performance and fast processing.

Image Preprocessing in Container Identifier Recognition System Using Multiple Threshold Regions (컨테이너 식별자 영상 인식 시스템에서 다중 임계영역을 이용한 영상 전처리)

  • Woo, Chong-Ho
    • Journal of Korea Multimedia Society
    • /
    • v.16 no.5
    • /
    • pp.549-557
    • /
    • 2013
  • This paper proposes a method using the multiple threshold regions in the image preprocessing procedure for container identifier recognition system. The multiple threshold regions are set by considering the container image characteristics and used as the candidates for the final one, The image is transformed to black and white images using these threshold regions, then labeling, panelling and panels merging are executed for each candidate, respectively. Finally the best threshold region is selected through this procedure and the character region can be extracted. Applying the similar method the noises are removed and the characters of identifier are segmented from the extracted region. In the experiments with 162 different images the success rates for extracting of the character region and segmenting the characters are 99.04% and 98.09%, respectively.

Screen-shot Image Demorieing Using Multiple Domain Learning (다중 도메인 학습을 이용한 화면 촬영 영상 내 모아레 무늬 제거 기법)

  • Park, Hyunkook;Vien, An Gia;Lee, Chul
    • Journal of Broadcast Engineering
    • /
    • v.26 no.1
    • /
    • pp.3-13
    • /
    • 2021
  • We propose a moire artifacts removal algorithm for screen-shot images using multiple domain learning. First, we estimate clean preliminary images by exploiting complementary information of the moire artifacts in pixel value and frequency domains. Next, we estimate a clean edge map of the input moire image by developing a clean edge predictor. Then, we refine the pixel and frequency domain outputs to further improve the quality of the results using the estimated edge map as the guide information. Finally, the proposed algorithm obtains the final result by merging the two refined results. Experimental results on a public dataset demonstrate that the proposed algorithm outperforms conventional algorithms in quantitative and qualitative comparison.

An reproduction algorithm of nighttime road-image for visibility evaluation of headlamps (헤드램프의 시계성 평가를 위한 야간 도로 영상 재현 알고리즘)

  • 이철희;하영호
    • Proceedings of the IEEK Conference
    • /
    • 2000.11d
    • /
    • pp.69-72
    • /
    • 2000
  • This study proposes a new calculation method for generating real nighttime lamp-lit images. In order to improve the color appearance in the prediction of a nighttime lamp-lighted scene, the lamp-lit image is synthesized based on spectral distribution using the estimated local spectral distribution of the headlamps and the surface reflectance of every object. The principal component analysis method is introduced to estimate the surface color of an object, and the local spectral distribution of the headlamps is calculated based on the illuminance data and spectral distribution of the illuminating headlamps. HID and halogen lamps are utilized to create beam patterns and captured road scenes are used as background images to simulate actual headlamp-lit images on a monitor. As a result, the reproduced images presented a color appearance that was very close to a real nighttime road image illuminated by single and multiple headlamps.

  • PDF

Visual Attention Detection By Adaptive Non-Local Filter

  • Anh, Dao Nam
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.5 no.1
    • /
    • pp.49-54
    • /
    • 2016
  • Regarding global and local factors of a set of features, a given single image or multiple images is a common approach in image processing. This paper introduces an application of an adaptive version of non-local filter whose original version searches non-local similarity for removing noise. Since most images involve texture partner in both foreground and background, extraction of signified regions with texture is a challenging task. Aiming to the detection of visual attention regions for images with texture, we present the contrast analysis of image patches located in a whole image but not nearby with assistance of the adaptive filter for estimation of non-local divergence. The method allows extraction of signified regions with texture of images of wild life. Experimental results for a benchmark demonstrate the ability of the proposed method to deal with the mentioned challenge.

FREE VIEWPOINT IMAGE RECONSTRUCTION FROM 3-D MULTI-FOCUS IMAGING SEQUENCES AND ITS IMPLEMENTATION BY CELL-BASED COMPUTING

  • Yonezawayz, Hiroki;Kodamay, Kazuya;Hamamotoz, Takayuki
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2009.01a
    • /
    • pp.751-754
    • /
    • 2009
  • This paper deals with the Cell-based distributed processing for generating free viewpoint images by merging multiple differently focused images. We previously proposed the method of generating free viewpoint images without any depth estimation. However, it is not so easy to realize real-time image reconstruction based on our previous method. In this paper, we discuss the method to reduce the processing time by dimension reduction for image filtering and Cell-based distributed processing. Especially, the method of high-speed image reconstruction by the Cell processor on SONY PLAYSTATION3(PS3) is described in detail. We show some experimental results by using real images and we discuss the possibility of real-time free viewpoint image reconstruction.

  • PDF

REGISTRATION OF MICROSCOPIC SECTION IMAGES BASED ON A RADIAL DISTORTION MODEL

  • Lee, Hoo-Sung;Yun, Il-Dong;Kim, Dong-Sik
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2009.01a
    • /
    • pp.303-306
    • /
    • 2009
  • Registration of microscopic section images from an organism is of importance in analyzing and understanding the function of an organism. Microscopes usually suffer from the radial distortion due to the spherical aberration. In this paper, a correction scheme for the intra-section registration is proposed. The correction scheme uses two corresponding feature points under the radial distortion model. Proposing several variations of the proposed scheme, we extensively conducted experiments for real microscopic images. Iterative versions of the correction from multiple feature points provide good performance for the registration of the optical and scanning electron microscopic images.

  • PDF

Boundary Stitching Algorithm for Fusion of Vein Pattern (정맥패턴 융합을 위한 Boundary Stitching Algorithm)

  • Lim, Young-Kyu;Jang, Kyung-Sik
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2005.05a
    • /
    • pp.521-524
    • /
    • 2005
  • This paper proposes a fusion algorithm which merges multiple vein pattern images into a single image, larger than those images. As a preprocessing step of template matching, during the verification of biometric data such as fingerprint image, vein pattern image of hand, etc., the fusion technique is used to make reference image larger than the candidate images in order to enhance the matching performance. In this paper, a new algorithm, called BSA (Boundary Stitching Algorithm) is proposed, in which the boundary rectilinear parts extracted from the candidate images are stitched to the reference image in order to enlarge its matching space. By applying BSA to practical vein pattern verification system, its verification rate was increased by about 10%.

  • PDF

Reduction of Edge Artifact in Adaptive Template Filtering (적응 템플릿 필터링에서의 Edge artifact 제거)

  • Ahn, C.B.;Song, Y.C.
    • Proceedings of the KIEE Conference
    • /
    • 2000.07d
    • /
    • pp.2921-2923
    • /
    • 2000
  • Adaptive template filtering has been proposed recently for an enhancement of signal-to-noise ratio. In some magnetic resonance images whose gray levels have relatively small dynamic ranges, e.g., T1 imaging, however, artificial stair-like artifact is observed in edge regions. This is partially due to edge enhancement effect in such voxels that contain multiple compounds at the boundaries of tissues. The gray levels of these voxels tend to change those of near voxels that contain single compound by the adaptive filtering, which exaggerate edge discontinuities. In this paper, we propose a technique to eliminate such artifact by identifying those voxels and assigning a larger template for them. Filtered images with the proposed technique show substantial visual enhancement at the edges without degradation of peak signal-to-noise ratio compared to the original adaptive template filtering for both magnetic resonance images and phantom images

  • PDF

Neighborhood Correlation Image Analysis for Change Detection Using Different Spatial Resolution Imagery

  • Im, Jung-Ho
    • Korean Journal of Remote Sensing
    • /
    • v.22 no.5
    • /
    • pp.337-350
    • /
    • 2006
  • The characteristics of neighborhood correlation images for change detection were explored at different spatial resolution scales. Bi-temporal QuickBird datasets of Las Vegas, NV were used for the high spatial resolution image analysis, while bi-temporal Landsat $TM/ETM^{+}$ datasets of Suwon, South Korea were used for the mid spatial resolution analysis. The neighborhood correlation images consisting of three variables (correlation, slope, and intercept) were evaluated and compared between the two scales for change detection. The neighborhood correlation images created using the Landsat datasets resulted in somewhat different patterns from those using the QuickBird high spatial resolution imagery due to several reasons such as the impact of mixed pixels. Then, automated binary change detection was also performed using the single and multiple neighborhood correlation image variables for both spatial resolution image scales.