• Title/Summary/Keyword: Multiple Trajectories

Search Result 87, Processing Time 0.023 seconds

Inverse dynamic analysis of flexible robot arms with multiple joints (다관절 유연 로보트 팔의 역동력학 해석)

  • 김창부;이승훈
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10a
    • /
    • pp.254-259
    • /
    • 1992
  • In this paper, we propose an optimal method for the tracking a trajectory of the end-effector of flexible robot arms with multiple joints. The proposed method finds joint trajectories and joint torques necessary to produce the desired end-effector motion of flexible manipulator. In inverse kinematics, optimized joint trajectories are computed from elastic equations. In inverse dynamics, joint torques are obtained from the joint equations by using the optimized joint trajectories. The equations of motion using finite element method and virtual work principle are employed. Optimal control is applied to optimize joint trajectories which are computed in inverse kinematics. The simulation of flexible planner manipulator is presented.

  • PDF

ECoMOT : An Efficient Content-based Multimedia Information Retrieval System Using Moving Objects' Trajectories in Video Data (ECoMOT : 비디오 데이터내의 이동체의 제적을 이용한 효율적인 내용 기반 멀티미디어 정보검색 시스템)

  • Shim Choon-Bo;Chang Jae-Woo;Shin Yong-Won;Park Byung-Rae
    • The KIPS Transactions:PartB
    • /
    • v.12B no.1 s.97
    • /
    • pp.47-56
    • /
    • 2005
  • A moving object has a various features that its spatial location, shape, and size are changed as time goes. In addition, the moving object has both temporal feature and spatial feature. It is one of the highly interested feature information in video data. In this paper, we propose an efficient content-based multimedia information retrieval system, so tailed ECoMOT which enables user to retrieve video data by using a trajectory information of moving objects in video data. The ECoMOT includes several novel techniques to achieve content-based retrieval using moving objects' trajectories : (1) Muitiple trajectory modeling technique to model the multiple trajectories composed of several moving objects; (2) Multiple similar trajectory retrieval technique to retrieve more similar trajectories by measuring similarity between a given two trajectories composed of several moving objects; (3) Superimposed signature-based trajectory indexing technique to effectively search corresponding trajectories from a large trajectory databases; (4) convenient trajectory extraction, query generation, and retrieval interface based on graphic user interface

Inverse Dynamic Analysis of A Flexible Robot Arm with Multiple Joints by Using the Optimal Control Method (최적 제어기법을 이용한 다관절 유연 로보트팔의 역동역학 해석)

  • Kim, C.B.;Lee, S.H.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.10 no.3
    • /
    • pp.133-140
    • /
    • 1993
  • In this paper, we prpose a method for tracking optimally a spatial trajectory of the end-effector of flexible robot arms with multiple joints. The proposed method finds joint trajectories and joint torques necessary to produce the desired end-effector motion of flexible manipulator. In inverse kinematics, optimized joint trajectories are computed from elastic equations. In inverse dynamics, joint torques are obtained from the joint euqations by using the optimized joint trajectories. The equations of motion using finite element method and virtual work principle are employed. Optimal control is applied to optimize joint trajectories which are computed in inverse kinematics. The simulation result of a flexible planar manipulator is presented.

  • PDF

The Five-year Developmental Trajectories of Perceived Stress and Depression in Korean Youth (초등학생 아동의 스트레스와 우울의 5년에 걸친 발달적 변화)

  • Park, Mi Hyun;Park, Kyung Ja;Kim, Hyoun K.
    • Korean Journal of Child Studies
    • /
    • v.33 no.4
    • /
    • pp.1-17
    • /
    • 2012
  • This study examined the developmental trajectories of perceived level of stress and depression in Korean youth using longitudinal data from the Korean Youth Panel Study (KYPS) of 2,844youth (1,524 boys) across $4^{th}$ grade through $8^{th}$ grade. Latent growth modeling indicated the presence of age-related, significant increases in stress and depression for both boys and girls. Girls experienced greater in stress and depression than did boys. Multiple group analysis indicated that there was no significant sex difference in effects of stress on depression. Overall, increases in stress were associated with increases in depression levels for both boys and girls. Conceptual and clinical implications of the findings were discussed.

Learning motivation of groups classified based on the longitudinal change trajectory of mathematics academic achievement: For South Korean students

  • Yongseok Kim
    • Research in Mathematical Education
    • /
    • v.27 no.1
    • /
    • pp.129-150
    • /
    • 2024
  • This study utilized South Korean elementary and middle school student data to examine the longitudinal change trajectories of learning motivation types according to the longitudinal change trajectories of mathematics academic achievement. Growth mixture modeling, latent growth model, and multiple indicator latent growth model were used to examine various change trajectories for longitudinal data. As a result of the analysis, it was classified into 4 subgroups with similar longitudinal change trajectories of mathematics academic achievement, and the characteristics of the mathematics subject, which emphasize systematicity, appeared. Furthermore, higher mathematics academic achievement was associated with higher self-determination and higher academic motivation. And as the grade level increases, amotivation increases and self-determination decreases. This study suggests that teaching and learning support using this is necessary because the level of learning motivation according to self-determination is different depending on the level of mathematics academic achievement reflecting the characteristics of the student.

Similar Sub-Trajectory Retrieval based on k-warping Algorithm for Moving Objects in Video Databases (비디오 데이타베이스에서 이동 객체를 위한 k-워핑 알고리즘 기반 유사 부분궤적 검색)

  • 심춘보;장재우
    • Journal of KIISE:Databases
    • /
    • v.30 no.1
    • /
    • pp.14-26
    • /
    • 2003
  • Moving objects' trajectories play an important role in indexing video data on their content and semantics for content-based video retrieval. In this paper, we propose new similar sub-trajectory retrieval schemes based on k-warping algorithm for efficient retrieval on moving objects' trajectories in video data. The proposed schemes are fixed-replication similar sub-trajectory retrieval(FRSR) and variable-replication similar sub-trajectory retrieval(VRSR). The former can replicate motions with a fixed number for all motions being composed of the trajectory. The latter can replicate motions with a variable number. Our schemes support multiple properties including direction, distance, and time interval as well as a single property of direction, which is mainly used for modeling moving objects' trajectories. Finally, we show from our experiment that our schemes outperform Li's scheme(no-warping) and Shan's scheme(infinite-warping) in terns of precision and recall measures.

Synchronized On-line Trajectory Generation Method for Mechanical System with Multiple Degrees-of-Freedom (다자유도 기계 시스템의 모션 제어를 위한 동기된 온라인 궤적 생성 방법)

  • Won, Daehee;Shin, Eunchol
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.9
    • /
    • pp.1385-1391
    • /
    • 2017
  • This work presents a synchronized on-line trajectory generation algorithm for mechanical system with multiple degrees-of-freedom. Proposed algorithm is designed to generate time-optimized trajectories and synchronized trajectories under the constraints such as maximum speed, acceleration, deceleration, non-zero initial velocity, etc. Also, because of small computation time, therefore this can be applied in real-time and it is easier to change the trajectory when an event occurs. We verified the feasibility through various trajectory generation.

A nonlinear programming approach to collision-avoidance trajectory planning of multiple robots

  • Suh, Suk-Hwan;Kim, Myung-Soo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1989.10a
    • /
    • pp.635-642
    • /
    • 1989
  • We formulated the multi-robot trajectory problem into a series of NLP problem, each of which is that of finding the optimal tip positions of the robots for the next time step. The NLP problem is composed of an objective function and three constraints, namely: a) Joint position limits, b) Joint velocity limits, and c) Collision-avoidance constraints. By solving a series of NLP problem, optimally coordinated trajectories can be determined without requiring any prior path information. This is a novel departure from the previous approach in which either all paths or at least one path is assumed to be given. Practical application of the developed method is for optimal synthesis of multiple robot trajectories in off-line. To test the validity and effectiveness of the method, numerical examples are illustrated.

  • PDF

Trajectory Planning of Satellite Formation Flying using Nonlinear Programming and Collocation

  • Lim, Hyung-Chu;Bang, Hyo-Choong
    • Journal of Astronomy and Space Sciences
    • /
    • v.25 no.4
    • /
    • pp.361-374
    • /
    • 2008
  • Recently, satellite formation flying has been a topic of significant research interest in aerospace society because it provides potential benefits compared to a large spacecraft. Some techniques have been proposed to design optimal formation trajectories minimizing fuel consumption in the process of formation configuration or reconfiguration. In this study, a method is introduced to build fuel-optimal trajectories minimizing a cost function that combines the total fuel consumption of all satellites and assignment of fuel consumption rate for each satellite. This approach is based on collocation and nonlinear programming to solve constraints for collision avoidance and the final configuration. New constraints of nonlinear equality or inequality are derived for final configuration, and nonlinear inequality constraints are established for collision avoidance. The final configuration constraints are that three or more satellites should form a projected circular orbit and make an equilateral polygon in the horizontal plane. Example scenarios, including these constraints and the cost function, are simulated by the method to generate optimal trajectories for the formation configuration and reconfiguration of multiple satellites.