• Title/Summary/Keyword: Multi-objective function optimization

Search Result 273, Processing Time 0.026 seconds

Design of a Swing-arm Actuator using the Compliant Mechanism - Multi-objective Optimal Design Considering the Stiffness Effect (컴플라이언트 메커니즘을 이용한 스윙 암 액추에이터의 설계 - 강성 효과를 고려한 다중목적 최적화 설계 -)

  • Lee Choong-yong;Min Seungjae;Yoo Jeonghoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.2 s.245
    • /
    • pp.128-134
    • /
    • 2006
  • Topology optimization is an effective scheme to obtain the initial design concept: however, it is hard to apply in case of non-linear or multi-objective problems. In this study, a modified topology optimization method is proposed to generate a structure of a swing arm type actuator satisfying maximum compliance as well. as maximum stiffness using the multi-objective optimization. approach. The multi-objective function is defined to maximize the compliance in the direction of focusing of the actuator and the second eigen-frequency of the structure. The design of experiments are performed and the response surface functions are formulated to construct the multi-objective function. The weighting factors between conflicting functions are determined by the back-error propagation neural network and the solution of multi-objective function is acquired using the genetic algorithm.

Multi-objective Optimization of Fuzzy System Using Membership Functions Defined by Normed Method (노음방법에 의해 정의된 소속함수를 사용한 퍼지계의 다목적 최적설계)

  • 이준배;이병채
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.8
    • /
    • pp.1898-1909
    • /
    • 1993
  • In this paper, a convenient scheme for solving multi-objective optimization problems including fuzzy information in both objective functions and constraints is presented. At first, a multi-objective problem is converted into single objective problem based on the norm method, and a merbership function is constructed by selecting its type and providing the parameters defined by the norm method. Finally, this fuzzy programming problem is converted into an ordinary optimization problem which can be solved by usual nonlinear programming techniques. With this scheme, a designer can conveniently obtain pareto optimal solutions of a fuzzy system only by providing some parameters corresponding to the importance of the objectiv functions. Proposed scheme is simple and efficient in treating multi-objective fuzzy systems compared with and method by with membership function value is provided interactively. To show the validity of the scheme, a simple 3-bar truss example and optimal cutting problem are solved, and the results show that the scheme is very useful and easy to treat multi-objective fuzzy systems.

Multi-objective Optimization of Vehicle Routing with Resource Repositioning (자원 재배치를 위한 차량 경로계획의 다목적 최적화)

  • Kang, Jae-Goo;Yim, Dong-Soon
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.44 no.2
    • /
    • pp.36-42
    • /
    • 2021
  • This paper deals with a vehicle routing problem with resource repositioning (VRPRR) which is a variation of well-known vehicle routing problem with pickup and delivery (VRPPD). VRPRR in which static repositioning of public bikes is a representative case, can be defined as a multi-objective optimization problem aiming at minimizing both transportation cost and the amount of unmet demand. To obtain Pareto sets for the problem, famous multi-objective optimization algorithms such as Strength Pareto Evolutionary Algorithm 2 (SPEA2) can be applied. In addition, a linear combination of two objective functions with weights can be exploited to generate Pareto sets. By varying weight values in the combined single objective function, a set of solutions is created. Experiments accomplished with a standard benchmark problem sets show that Variable Neighborhood Search (VNS) applied to solve a number of single objective function outperforms SPEA2. All generated solutions from SPEA2 are completely dominated by a set of VNS solutions. It seems that local optimization technique inherent in VNS makes it possible to generate near optimal solutions for the single objective function. Also, it shows that trade-off between the number of solutions in Pareto set and the computation time should be considered to obtain good solutions effectively in case of linearly combined single objective function.

Generalized evolutionary optimum design of fiber-reinforced tire belt structure

  • Cho, J.R.;Lee, J.H.;Kim, K.W.;Lee, S.B.
    • Steel and Composite Structures
    • /
    • v.15 no.4
    • /
    • pp.451-466
    • /
    • 2013
  • This paper deals with the multi-objective optimization of tire reinforcement structures such as the tread belt and the carcass path. The multi-objective functions are defined in terms of the discrete-type design variables and approximated by artificial neutral network, and the sensitivity analyses of these functions are replaced with the iterative genetic evolution. The multi-objective optimization algorithm introduced in this paper is not only highly CPU-time-efficient but it can also be applicable to other multi-objective optimization problems in which the objective function, the design variables and the constraints are not continuous but discrete. Through the illustrative numerical experiments, the fiber-reinforced tire belt structure is optimally tailored. The proposed multi-objective optimization algorithm is not limited to the tire reinforcement structure, but it can be applicable to the generalized multi-objective structural optimization problems in various engineering applications.

Multi-Objective Optimization Using Kriging Model and Data Mining

  • Jeong, Shin-Kyu;Obayashi, Shigeru
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.7 no.1
    • /
    • pp.1-12
    • /
    • 2006
  • In this study, a surrogate model is applied to multi-objective aerodynamic optimization design. For the balanced exploration and exploitation, each objective function is converted into the Expected Improvement (EI) and this value is used as fitness value in the multi-objective optimization instead of the objective function itself. Among the non-dominated solutions about EIs, additional sample points for the update of the Kriging model are selected. The present method was applied to a transonic airfoil design. Design results showed the validity of the present method. In order to obtain the information about design space, two data mining techniques are applied to design results: Analysis of Variance (ANOVA) and the Self-Organizing Map (SOM).

Application of multi objective genetic algorithm in ship hull optimization

  • Guha, Amitava;Falzaranoa, Jeffrey
    • Ocean Systems Engineering
    • /
    • v.5 no.2
    • /
    • pp.91-107
    • /
    • 2015
  • Ship hull optimization is categorized as a bound, multi variable, multi objective problem with nonlinear constraints. In such analysis, where the objective function representing the performance of the ship generally requires computationally involved hydrodynamic interaction evaluation methods, the objective functions are not smooth. Hence, the evolutionary techniques to attain the optimum hull forms is considered as the most practical strategy. In this study, a parametric ship hull form represented by B-Spline curves is optimized for multiple performance criteria using Genetic Algorithm. The methodology applied to automate the hull form generation, selection of optimization solvers and hydrodynamic parameter calculation for objective function and constraint definition are discussed here.

Design Method of Multi-Stage Gear Drive (Volume Minimization and Reliability Improvement) (다단 기어장치의 설계법(체적 감소 및 신뢰성 향상))

  • Park, Jae-Hee;Lee, Joung-Sang;Chong, Tae-Hyong
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.16 no.4
    • /
    • pp.36-44
    • /
    • 2007
  • This paper is focused on the optimum design for decreasing volume and increasing reliability of multi-stage gear drive. For the optimization on volume and reliability, multi-objective optimization is used. The genetic algorithm is introduced to multi-objective optimization method and it is used to develop the optimum design program using exterior penalty function method to solve the complicated subject conditions. A 5 staged gear drive(geared motor) is chosen to compare the result of developed optimum design method with the existing design. Each of the volume objective, reliability objective, and volume-reliability multi-objectives are performed and compared with existing design. As a result, optimum solutions are produced, which decrease volume and increase reliability. It is shown that the developed design method is good for multi-stage gear drive design.

Multi-objective BESO topology optimization for stiffness and frequency of continuum structures

  • Teimouri, Mohsen;Asgari, Masoud
    • Structural Engineering and Mechanics
    • /
    • v.72 no.2
    • /
    • pp.181-190
    • /
    • 2019
  • Topology optimization of structures seeking the best distribution of mass in a design space to improve the structural performance and reduce the weight of a structure is one of the most comprehensive issues in the field of structural optimization. In addition to structures stiffness as the most common objective function, frequency optimization is of great importance in variety of applications too. In this paper, an efficient multi-objective Bi-directional Evolutionary Structural Optimization (BESO) method is developed for topology optimization of frequency and stiffness in continuum structures simultaneously. A software package including a Matlab code and Abaqus FE solver has been created for the numerical implementation of multi-objective BESO utilizing the weighted function method. At the same time, by considering the weaknesses of the optimized structure in single-objective optimizations for stiffness or frequency problems, slight modifications have been done on the numerical algorithm of developed multi-objective BESO in order to overcome challenges due to artificial localized modes, checker boarding and geometrical symmetry constraint during the progressive iterations of optimization. Numerical results show that the proposed Multiobjective BESO method is efficient and optimal solutions can be obtained for continuum structures based on an existent finite element model of the structures.

Multi-objective Optimization of High Speed Railway Steel Bridges (고속철도 강교량의 다목적 최적설계)

  • 조효남;민대홍;정기영
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2002.10a
    • /
    • pp.263-270
    • /
    • 2002
  • This study proposes a multi-objective optimum design method for a rational optimization of high-speed railway bridges. This multi-objective optimization is found to be effective in optimizing multi-objective problems that incorporate cost and dynamic responses such as vertical acceleration and displacement. These design factors are so important in the high-speed railway bridges. And the trade off method which is one of the most typical multi-objective optimization methods is used in this study, since the dynamic factors are formulated as objective function and also considered as constraints. And the Pareto curve can be obtained by performing the multi-objective optimization for real high-speed railway bridges. Thus, it is found that more reasonable design can be obtained when compared with those using conventional design procedure.

  • PDF

Fuzzy multi-objective optimization of the laminated composite beam (복합재 적층 보의 퍼지 다목적 최적설계)

  • 이강희;구만회;이종호;홍영기;우호길
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2000.04a
    • /
    • pp.143-148
    • /
    • 2000
  • In this article, we presents multi-objective design optimization of laminated composite beam using Fuzzy programming method. At first, the two design objectives are minimizing the structural weight and maximizing the buckling load respectively. Fuzzy multi-optimization problem can be formulated based on results of single optimizations. Due to different relative importance of design objectives, membership functions are constructed by adding exponential parameters for different objective's weights. Finite element analysis of composite beam for buckling behavior are carried by Natural mode method proposed by J.Argyris and computational time of analysis can be reduced. With this scheme, a designer can conveniently obtain a compromise optimal solution of a multi-objective optimization problem only by providing some exponential parameters corresponding to the importance of the objective functions.

  • PDF