• Title/Summary/Keyword: Multi-level design

Search Result 893, Processing Time 0.027 seconds

Design of a Multi-level VHDL Simulator (다층 레벨 VHDL 시뮬레이터의 설계)

  • 이영희;김헌철;황선영
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.30A no.10
    • /
    • pp.67-76
    • /
    • 1993
  • This paper presents the design and implementation of SVSIM (Sogang VHDL SIMulator), a multi-level VHDL simulator, designed for the construction of an integrated VGDL design environment. The internal model of SVSIM is the hierarchical C/DFG which is extended from C/DFG to include the network hierarchy and local/glabal control informations. Hierarchical network is not flattened for simulation, resulting in the reduction of space complexity. The predufined/user-defined types except for the record type and the predefined/user-defined attributes are supported in SVSIM. Algorithmic-level descriptions can be siumlated by the support of recursive procedure/function calls. Input stimuli can be generated by command script in stimuli file or in VHDL source code. Experimential results show SVSIM can be efficiently used for the simulation of the pure behavioral descriptions, structural descriptions or mixture of these.

  • PDF

Parametric Design of Axial Fan for Air-Conditioning Unit in terms of Aerodynamic Performance and Noise Level (공조용 축류홴 설계 및 설계변수에 따른 성능과 소음비교)

  • Lee, Seung-Jin;Choi, Go-Bong;Cho, Hong-Jun;Song, Woo-Seog;Lee, Seung-Bae
    • The KSFM Journal of Fluid Machinery
    • /
    • v.13 no.3
    • /
    • pp.24-29
    • /
    • 2010
  • Axial fans for an air-conditioning unit are designed to equip the system with an expected flow-rate and low noise level by applying the blade design method of multi-sectioning and local camber generation. In this study, the distributions of chord length, stagger angle, and camber angle are globally and locally determined for the given specific speed, which is considered to be relatively high. The mock-up fans are observed to satisfy the aerodynamic performance and the noise level for the system simultaneously and discussed in terms of local flow patterns related to the emitted noise.

l-STEP GENERALIZED COMPOSITE ESTIMATOR UNDER 3-WAY BALANCED ROTATION DESIGN

  • KIM K. W.;PARK Y. S.;KIM N. Y.
    • Journal of the Korean Statistical Society
    • /
    • v.34 no.3
    • /
    • pp.219-233
    • /
    • 2005
  • The 3-way balanced multi-level rotation design has been discussed (Park Kim and Kim, 2003), where the 3-way balancing is done on interview time, in monthly sample and rotation group and recall time. A greater advantage of 3-way balanced design is accomplished by an estimator. To obtain the advantage, we generalized previous generalized composite estimator (GCE). We call this as l-step GCE. The variance of the l-step GCE's of various characteristics of interest are presented. Also, we provide the coefficients which minimize the variance of the l-step GCE. Minimizing a weighted sum of variances of all concerned estimators of interest, we drive one set of the compromise coefficient of l-step GCE's to preserve additivity of estimates.

Optimal design of multi-former die set by the techniques of horizontal split

  • Kim Chul;Park Chul-Woo;Chang Young-June
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.7 no.1
    • /
    • pp.3-8
    • /
    • 2006
  • This paper deals with an automated computer-aided process planning and die design system by which designer can determine operation sequences even if they have a little experience in process planning and die design for axisymmetric products. An attempt is made to link programs incorporating a number of expert design rules with the process variables obtained by commercial FEM softwares, DEFORM and ANSYS, to form a useful package. The system can provide a flexible process based on either the reduction in the number of forming sequences by combining the possible two processes in sequence, or the reduction of deviation of the distribution on the level of the required forming loads by controlling the forming ratios. Especially in die design module optimal design technique and horizontal split of die insert were investigated for determining appropriate dimensions of components of multi-former die set. Results obtained, using the modules, enable the design and manufacture of a die set for a multi-former to be more efficiently performed.

Design of AES/SEED Encription Module and Implemention of Multi-Level Security System (AES/SEED암호화 모듈 설계와 멀티레벨 보안 시스템 구현)

  • 박덕용;최경문;김현성;차재원;김영철
    • Proceedings of the IEEK Conference
    • /
    • 2003.07b
    • /
    • pp.1133-1136
    • /
    • 2003
  • This paper has been studied about the implemention of the data-encription processor and imformation security system. Also in the paper, the brief contents of the verification of the data-encryption algorithm and the method of using HDL-level sources implemented is described. And then this paper has been designed for multi-level data secure system to verify and analyze the data-encryption processor implemented as VHDL.

  • PDF

Study on Optimum Modification Method of Dynamic Charcteristics of Ship Structures by Multi-level Optimization (다단계최적화방법에 의한 선박구조물의 동특성의 최적변경법에 관한연구)

  • 박석주
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.23 no.4
    • /
    • pp.574-582
    • /
    • 1999
  • This paper discusses the multi-level optimization method in dynamic optimization problems through stiffened plate of ship structures. In structural optimization the computational cost increases rapidly as the number of design variables increases. And we need a great amount of cal-culation and time on problems of modified dynamic characteristics of large and complicated struc-tures. In this paper the multi-level optimization is proposed which decreases computational time and cost. the dynamic optimum designs of stiffened plate that control the natural frequency and minimize weight subjected to constraints condition are derived. The way to apply the multi-level optimization methods in this study follow: In the first step the dynamic characteristics is controlled for the two-dimensional model of stiffened plate by sensitivity analysis and quasi-least squares methods. In the second step the cross-section of the stiffener is decided so that the weight is minimized under needed constraints by the steepest descent or ascent method. In the third the three-dimensional model is made based on the results of the first step and the second step confirmation and finer tuning of the objective function are carried out. It is shown that the results are effective in the optimum modification for dynamic characteristics of the stiffened plate.

  • PDF

A winding design of Tap Level Converter (Tap Level 제어 전력 변환기의 권선설계)

  • Chun J.H.;Lee H.W.
    • Proceedings of the KIPE Conference
    • /
    • 2006.06a
    • /
    • pp.53-55
    • /
    • 2006
  • In this paper discusses winding methode of single phase AC-DC reversible power converter The reversible power converter driven by multi Tap winding at both side switching control. It has a advantage that simple drive of main switching device. and obtain load current of good quality without filter circuit and free from noise or isolation for lower switching frequency. In this research, study on current type converter and inverter circuit that consist for possibility of AC-DC/DC-AC multi-level reversible converter.

  • PDF

Member Utilization Concept Design for Hollow Circular Section Multi-column Tower Subjected to 10MW Level Wind Turbines (10MW급 풍력발전용 원형강관 멀티기둥타워의 부재유용도 개념설계)

  • Kim, Kyungsik;Kim, Mi Jin
    • Journal of Korean Society of Steel Construction
    • /
    • v.29 no.3
    • /
    • pp.205-215
    • /
    • 2017
  • This study presents an example of conceptual design for hollow circular section multi-column tower system subjected to 10MW level wind load by introducing a method based on member utilization that examine both structural stability and economical efficiency. The basic assumptions for the proto type of a multi-column tower that can replace a single-cylinder tower were suggested and structural models were constructed following the assumptions and analyzed for identifying member forces. Based on the calculated member strengths and acting loads, the member utilization of the proposed multi-column tower structures were calculated for axial force, shear, bending and torsion and evaluaed for suitability as a wind tower. Design parameters such as steel tube dimensions, slenderness ratio, and number of floors for braces was proposed in the acceptable range of member utilization for conceptual design of multi-column wind towers.

System Level Design of Multi-standard Receiver Using Reconfigurable RF Block

  • Kim, Chang-Jae;Jang, Young-Kyun;Yoo, Hyung-Joun
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.4 no.3
    • /
    • pp.174-181
    • /
    • 2004
  • In this paper, we review the four receiver architectures and four methods for multi-standard receiver design. Propose reconfigurable RF block can be used for both low-IF and direct conversion architecture. Also, using reconfigurable mixer method, it can be operated at $2{\sim}6$ GHz range for multi-standard receiver. It consists of wideband mixer, filter, and automatic gain control amplifier and to get wide-band operation, $2{\sim}6$ GHz, wide-band mixer use flexible input matching method. Besides, to design multi-standard receiver, LNA bank that support each standard is necessary and it has good performance to compensate the performance of wide-band mixer. Finally, we design and simulate proposed reconfigurable RF block and to prove that it has acceptable performances for various wireless standards, the LNA bank that supports both IEEE 802.11a/b/g and WCDMA is also designed and simulated with it.

A Study on the Multi-level Optimization Method for Heat Source System Design (다단계 최적화 수법을 이용한 열원 설비 설계법에 관한 연구)

  • Yu, Min-Gyung;Nam, Yujin
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.28 no.7
    • /
    • pp.299-304
    • /
    • 2016
  • In recent years, heat source systems which have a principal effect on the performance of buildings are difficult to design optimally as a great number of design factors and constraints in large and complicated buildings need to be considered. On the other hand, it is necessary to design an optimum system combination and operation planning for energy efficiency considering Life Cycle Cost (LCC). This study suggests a multi-level and multi-objective optimization method to minimize both LCC and investment cost using a genetic algorithm targeting an office building which requires a large cooling load. The optimum method uses a two stage process to derive the system combination and the operation schedule by utilizing the input data of cooling and heating load profile and system performance characteristics calculated by dynamic energy simulation. The results were assessed by Pareto analysis and a number of Pareto optimal solutions were determined. Moreover, it was confirmed that the derived operation schedule was useful for operating the heat source systems efficiently against the building energy requirements. Consequently, the proposed optimization method is determined by a valid way if the design process is difficult to optimize.