• 제목/요약/키워드: Multi-function Phenomena

검색결과 40건 처리시간 0.024초

다중 임계치 함수의 TI 웨이브렛 잡음제거 기법 (A Study on Translation-Invariant Wavelet De-Noising with Multi-Thresholding Function)

  • 최재용
    • 한국음향학회지
    • /
    • 제25권7호
    • /
    • pp.333-338
    • /
    • 2006
  • 수중 방사소음 측정시 낮은 신호대 잡음비를 가지는 신호에 대해 유용한 신호를 얻기 위해서는 잡음제거가 이루어져야 한다. 본 논문은 잡음제거를 수행하기 위하여 Donoho 등에 의해 제안된 Translation-Invariant (TI) 웨이브렛 기반으로 다중 임계치 함수를 적용한 잡음제거 기법을 제안한다. 기존의 웨이브렛 잡음제거 기법은 특이점 부근에서 Pseudo-Gibbs 현상이 발생하는 문제점이 있다 TI 웨이브렛은 신호의 특성 위치를 변화시켜 Pseudo-Gibbs 현상을 제거한다. 그리고 배경잡음 및 외부잡음을 제거하기 위해 각 노드별 변형된 소프트 임계치를 적용한 다중 임계치 함수를 제안한다. 제안 기법의 타당성을 검토하기 위해 모의 시뮬레이션과 해상실험을 수행한 결과 신호대 잡음비가 23dB 및 18dB 이상 개선됨을 확인하였다.

MULTI-SCALE DERIVATIVE OF IRREGULAR FUNCTIONS

  • Kim, Tae-Sik
    • Journal of applied mathematics & informatics
    • /
    • 제13권1_2호
    • /
    • pp.393-404
    • /
    • 2003
  • In general, a differential operator can be used as a tool of treating the local properties of given function. However, when the given function is varied with high frequency and has irregular form with non-stationary evolution it may not act its role sufficiently as in case of nowhere differentiable curves. In this paper we introduce a multi-scale derivative as a form of weakened global derivative so that it may explain its semi global diffusion properties as well as local ones for the various irregular diffusion phenomena.

다물체계의 자려진동 구현을 위한 마찰 모델링 (Friction Model to Realize Self-Excited Vibration of Multi-body Systems)

  • 노현영;유홍희
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2007년도 춘계학술대회논문집
    • /
    • pp.103-108
    • /
    • 2007
  • This paper presents a friction model to realize self-excited vibration of multi-body systems. The friction coefficient is modeled with a spline function in most commercial codes. Even if such a function resolves the problem of discontinuity in friction force, it cannot realize self-excited vibration phenomena. Furthermore, as the relative velocity approaches zero, the friction coefficient approaches zero with the conventional model. So, slip occurs when small force is applied to the system. To avoid these problems a new friction model is proposed in this study. With the new friction model, the self-excited vibration can be realized since the friction coefficient changes with the relative velocity. Furthermore, the slip phenomena could be reduced significantly with the proposed model.

  • PDF

다물체계의 자려진동 구현을 위한 마찰 모델링 (Friction Model to Realize Self-excited Vibration of Multi-body Systems)

  • 노현영;유홍희
    • 한국소음진동공학회논문집
    • /
    • 제17권6호
    • /
    • pp.524-530
    • /
    • 2007
  • This paper presents a friction model to realize self-excited vibration of multi-body systems. The friction coefficient is modeled with a spline function in most commercial codes. Even if such a function resolves the problem of discontinuity in friction force, it cannot realize self-excited vibration phenomena. Furthermore, as the relative velocity approaches zero, the friction coefficient approaches zero with the conventional model. So, slip occurs when small force is applied to the system. To avoid these problems a new friction model is proposed in this study. With the new friction model, the self-excited vibration can be realized since the friction coefficient changes with the relative velocity. Furthermore, the slip phenomena could be reduced significantly with the proposed model.

혈액 펌프의 기계적 성능과 생체 역학적 성능에 대한 연구 (INVESTIGATION ON MECHANICAL AND BIO-MECHANICAL PERFORMANCE OF A CENTRIFUGAL BLOOD PUMP)

  • 장민욱;;허남건;강성원;김원정;강신형
    • 한국전산유체공학회지
    • /
    • 제20권2호
    • /
    • pp.88-95
    • /
    • 2015
  • Blood pump analysis process includes both mechanical and bio-mechanical aspects. Since a blood pump is a mechanical device, it has to be mechanically efficient. On the other hand, blood pumps function is sensitively related to the blood recirculation; hence, bio-factors such as hemolysis and thrombosis become important. This paper numerically investigates the mechanical and bio-mechanical performances of the Rotaflow in the extracorporeal membrane oxygenation(ECMO), Ventricular Assist Device(VAD), and full-load conditions. The operational conditions are defined as(400[mmHg], 5[L/min.]), (100[mmHg], 3[L/min.]), and (600[mmHg], 10[L/min.]) for ECMO, VAD, and full-load conditions, respectively. The results are presented and analyzed from the mechanical aspect via performance curves, and from bio-mechanical aspect via focusing on hemolytic characteristics. Regions of top and bottom cavities show recirculation in both ECMO and VAD condtions. In addition, Eulerian-based calculation of modified index of hemolysis(MIH) has been investigated. The results demonstrate that the VAD condition has the least risk of hemolysis among the others, while the full-load condition has the highest risk.

Forecasting and precision on using multi-layer neural network

  • Zhu, Hanxi;Aoyama, Tomoo;Yoshihara, Ikuo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1999년도 제14차 학술회의논문집
    • /
    • pp.218-221
    • /
    • 1999
  • Forecasting and extrapolation for time dependent phenomena by using Multi layer neural network has been studied. We calculated values of a function at short intervals, and made one dimensional vector whose elements were a partial gather of the values. If there is anything same as the future of the functions exists in the fragment set, it is possible for us to have an advanced precision extrapolation. Otherwise, if the approximate function of the primitive function can be constructed by teaming the short interval in the network, the precision of extrapolation also can be well realized.

  • PDF

기술함수를 이용한 비선형 결합부를 가진 구조물의 진동해석 (Vibration Analysis of Structure with Nonlinear Joint Using Describing Function)

  • 박해성;지태한;박영필
    • 대한기계학회논문집
    • /
    • 제18권2호
    • /
    • pp.372-379
    • /
    • 1994
  • In this study, the describing function is adopted to represent nonlinearity in the system equations. The compliance can be obtained by solving nonlinear simultaneous algebraic quations for multi-degrees-of-freedom system with multinonlinearities. When the technique is applied, the nonlinearity of the system can be identified from the compliance which is obtained from the sinusoidal excitation of the system. By employing the describing function in the Building Block Analysis, we can extensively develop the BBA into investigation of the continuous systems with nonlinearities. The evaluated compliance can quantitatively show the effects of nonlinearity such as the transfer of the natural frequency, the variance of the compliance at the natural frequency, and the jump phenomena which occur during sweeping of the excitation frequency.

다상유체와 영상처리 : 레벨셋 방법 (Multi-Phase Flows and Image Processing: Level Set Method)

  • 강명주
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2011년 춘계학술대회논문집
    • /
    • pp.259-260
    • /
    • 2011
  • Using modern techniques from scientific computing and numerical analysis, natural phenomena or scientific experiment can be simulated effectively with a computer and used for computer graphics, for example as special effects for the film industry, manufacturing the thin film, multi-phase simulation and image processing. The Level Set method can make those things happen without a lot of difficulties. This method was devised by Osher and Sethian(1988) to represent dynamically moving interfaces as the zero level set of a scalar function that evolves in time. Since then, many researchers have worked on many applications using a Level Set Method. I will give a talk about the applications of the Level Set Method.

  • PDF

Multi-level approach for parametric roll analysis

  • Kim, Tae-Young;Kim, Yong-Hwan
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제3권1호
    • /
    • pp.53-64
    • /
    • 2011
  • The present study considers multi-level approach for the analysis of parametric roll phenomena. Three kinds of computation method, GM variation, impulse response function (IRF), and Rankine panel method, are applied for the multi-level approach. IRF and Rankine panel method are based on the weakly nonlinear formulation which includes nonlinear Froude-Krylov and restoring forces. In the computation result of parametric roll occurrence test in regular waves, IRF and Rankine panel method show similar tendency. Although the GM variation approach predicts the occurrence of parametric roll at twice roll natural frequency, its frequency criteria shows a little difference. Nonlinear roll motion in bichromatic wave is also considered in this study. To prove the unstable roll motion in bichromatic waves, theoretical and numerical approaches are applied. The occurrence of parametric roll is theoretically examined by introducing the quasi-periodic Mathieu equation. Instability criteria are well predicted from stability analysis in theoretical approach. From the Fourier analysis, it has been verified that difference-frequency effects create the unstable roll motion. The occurrence of unstable roll motion in bichromatic wave is also observed in the experiment.

LES를 이용한 판토그라프 팬헤드의 와 흘림 현상 해석 (ANALYSIS OF VORTEX SHEDDING PHENOMENA AROUND PANTOGRAPH PANHEAD FOR TRAIN USING LARGE EDDY SIMULATION)

  • 장용준
    • 한국전산유체공학회지
    • /
    • 제16권2호
    • /
    • pp.17-23
    • /
    • 2011
  • The turbulent flow and vortex shedding phenomena around pantograph panhead of high speed train were investigated and compared with available experimental data and other simulations. The pantograph head was simplified to be a square-cross-section pillar and assumed to be no interference with other bodies. The Reynolds number (Re) was 22,000. The LES(large eddy simulation) of FDS code was applied to solve the momentum equations and the Wener-Wengle wall model was employed to solve the near wall turbulent flow. Smagorinsky model($C_s$=0.2) was used as SGS(subgrid scale) model. The total grid numbers were about 9 millions and the analyzed domain was divided into 12 multi blocks which were communicated with each other by MPI. The time-averaged mainstream flows were calculated and well compared with experimental data. The phased-averaged quantities had also a good agreement with experimental data. The near-wall turbulence should be carefully treated by wall function or direct resolution to get successful application of LES methods.