• 제목/요약/키워드: Multi-flow Model

검색결과 728건 처리시간 0.032초

해저조도 변화를 이용한 폐쇄성 만의 해수순환 개선 (Improvement of Tidal Circulation in a Closed Bay using Variation of Bottom Roughness)

  • 부성윤
    • 한국해양공학회지
    • /
    • 제19권1호
    • /
    • pp.1-7
    • /
    • 2005
  • Tidal circulation in a closed bay using a variation of bottom roughness was investigated through the numerical experiments based on a finite difference multi-level model. Various distributions of bottom roughness in the bay were implemented to determine their effects. It hadbeen determined that residual currents can be generated from the differences of the bottom roughness between streaming and reverse flow directions. The magnitude of residual currents and volume flow rate increase when the relative ratio of bottom roughness between streaming and reverse flow directions increase. Circulation in the closed bay is also improved by the employment of the change of bottom roughness.

원심다익송풍기의 미끄럼 계수에 대한 연구 (Study on The Slip Factor Model for Multi-Blades Centrifugal Fan)

  • 구오엔민;김광용;서성진
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2002년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.111-115
    • /
    • 2002
  • The objective of this work is to develop improved slip factor model and correction method to predict flow through impeller in forward-curved centrifugal fan by investigating the validity of various slip factor models. Both steady and unsteady three-dimensional CFD analyses were performed with a commercial code tn validate the slip factor model and the correction method. The results show that the improved slip factor model presented in this paper could provide more accurate predictions for forward-curved centrifugal impeller than the other slip factor models since the presented model takes into account the effect of blade curvature. The comparison with CFD results also shows that the improved slip factor model coupled with the present correction method provides accurate predictions for mass-averaged absolute circumferential velocity at the exit of impeller near and above the flow rate of peaktotal pressure coefficient.

  • PDF

래티스볼츠만 다상류 모델의 검토 및 응용 (An Investigation of Lattice Boltzmann Multi-phase Model and it Application)

  • 강호근;안수환
    • 한국마린엔지니어링학회:학술대회논문집
    • /
    • 한국마린엔지니어링학회 2006년도 전기학술대회논문집
    • /
    • pp.269-270
    • /
    • 2006
  • A finite difference lattice Boltzmann model which allows us to simulate gas-liquid two-phase flows with large density difference, for instance, 800 times for air and water is considered. Two-particle model is used and the density difference is introduced by changing the acceleration according to the fluid density. Numerical measurement of surface tension agrees well with theoretical predictions. Simulations of two-phase phenomenon for phase-transition is carried out, showing applicability of the model for two-phase flows. The two-dimensional cavitating flow around a board set up in the fluid way is also simulated. As a result, it was confirmed that the FDLB method with two-particle model was effective in numerical simulation of cavitating flow and the bubble periodically grew up at the low pressure area behind the board, in which the fluid condition was influenced by the cavitation number.

  • PDF

유량 보간 신경망 모형의 개발 및 낙동강 유역에 적용 (Development of Flow Interpolation Model Using Neural Network and its Application in Nakdong River Basin)

  • 손아롱;한건연;김지은
    • 환경영향평가
    • /
    • 제18권5호
    • /
    • pp.271-280
    • /
    • 2009
  • The objective of this study is to develop a reliable flow forecasting model based on neural network algorithm in order to provide flow rate at stream sections without flow measurement in Nakdong river. Stream flow rate measured at 8-days interval by Nakdong river environment research center, daily upper dam discharge and precipitation data connecting upstream stage gauge were used in this development. Back propagation neural network and multi-layer with hidden layer that exists between input and output layer are used in model learning and constructing, respectively. Model calibration and verification is conducted based on observed data from 3 station in Nakdong river.

공학적 관점에서의 다상유동 문제의 수치해석 (Simulation of industrial multiphase flows)

  • Han aehoon;Alajbegovic Ales;Seo Hyeoncheol;Blahowsky Peter
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2002년도 학술대회지
    • /
    • pp.389-392
    • /
    • 2002
  • In many industrial applications, multiphase flow analysis is the norm rather than an exception as compared to more-conventional single-phase investigation. This paper describes the implementation of the multiphase flow simulation capability in the general purpose CFD software AVL FIRE/SWIFT. The governing equations are discretized based on a finite volume method (FVM) suitable fur very complex geometry, The pressure field is obtained using the SIMPLE algorithm. Depending on the characteristics of the multiphase flow to be examined, the user can choose either the two-fluid model or an explicit interface-tracking model based on the Volume-of-Fluid approach. For truly 'multi'-phase flow problems, it is also possible to apply a hybrid model where certain phases are explicitly tracked while the other phases are handled by the two fluid model. In order to demonstrate the capability of the method, applications to the Taylor bubble flow simulations are presented.

  • PDF

DEVELOPMENT OF THE MULTI-DIMENSIONAL HYDRAULIC COMPONENT FOR THE BEST ESTIMATE SYSTEM ANALYSIS CODE MARS

  • Bae, Sung-Won;Chung, Bub-Dong
    • Nuclear Engineering and Technology
    • /
    • 제41권10호
    • /
    • pp.1347-1360
    • /
    • 2009
  • A multi-dimensional component for the thermal-hydraulic system analysis code, MARS, was developed for a more realistic three-dimensional analysis of nuclear systems. A three-dimensional and two-fluid model for a two-phase flow in Cartesian and cylindrical coordinates was employed. The governing equations and physical constitutive relationships were extended from those of a one-dimensional version. The numerical solution method adopted a semi-implicit and finite-difference method based on a staggered-grid mesh and a donor-cell scheme. The relevant length scale was very coarse compared to commercial computational fluid dynamics tools. Thus a simple Prandtl's mixing length turbulence model was applied to interpret the turbulent induced momentum and energy diffusivity. Non drag interfacial forces were not considered as in the general nuclear system codes. Several conceptual cases with analytic solutions were chosen and analyzed to assess the fundamental terms. RPI air-water and UPTF 7 tests were simulated and compared to the experimental data. The simulation results for the RPI air-water two-phase flow experiment showed good agreement with the measured void fraction. The simulation results for the UPTF downcomer test 7 were compared to the experiment data and the results from other multi-dimensional system codes for the ECC delivery flow.

휴대용 POC 시스템을 위한 원터치형 면역 센싱 랩온어칩 (One-Touch Type Immunosenging Lab-on-a-chip for Portable Point-of-care System)

  • 박신욱;강태호;이준황;윤현철;양상식
    • 전기학회논문지
    • /
    • 제56권8호
    • /
    • pp.1424-1429
    • /
    • 2007
  • This paper presents a simple and reliable one-touch type multi-immunosensing lab-on-a-chip (LOC) detecting antibodies as multi-disease markers using electrochemical method suitable for a portable point-of-care system (POCS). The multi-stacked LOC consists of a PDMS space layer for liquids loading, a PDMS valve layer with 50 im in height for the membrane, a PDMS channel layer for the fluid paths, and a glass layer for multi electrodes. For the disposable immunoassay which needs sequential flow control of sample and buffer liquids according to the designed strategies, reliable and easy-controlled on-chip operation mechanisms without any electric power are necessary. The driving forces of sequential liquids transfer are the capillary attraction force and the pneumatic pressure generated by air bladder push. These passive fluid transport mechanisms are suitable for single-use LOC module. Prior to the application of detection of the antibody as a disease marker, the model experiments were performed with anti-DNP antibody and anti-biotin antibody as target analytes. The flow test results demonstrate that we can control the fluid flow easily by using the capillary stop valve and the PDMS check valves. By the model tests, we confirmed that the proposed LOC is easily applicable to the bioanalytic immunosensors using bioelectrocatalysis.

비압축성 점성유동 해석에서의 Multi-Stage Runge-Kutta 기법의 수렴특성 연구 (CONVERGENCE CHARACTERISTICS OF MULTI-STAGE RUNGE-KUTTA METHODS IN INCOMPRESSIBLE VISCOUS FLOW COMPUTATIONS)

  • 박원찬;문영준
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 1997년도 추계 학술대회논문집
    • /
    • pp.73-80
    • /
    • 1997
  • Objective of the present study is to examine the convergence characteristics of the various multi-stage Runge-Kutta methods in solving the incompressible Navier-Stokes equations of a time-marching from casted by the artificial compressibility method. Convergence characteristics are examined over 2-stage, 4-stage and hybrid type (using 4-, 3-, 2-stages sequentially) Runge-Kutta methods for a laminar lid-driven cavity flow, and also for a turbulent bump channel flow using Chien's low-Reynolds number turbulence model. Efforts are made to establish a stable and fast convergent multi-stage Runge-Kutta method with minimal artificial dissipations.

  • PDF