• Title/Summary/Keyword: Multi-bridge inverter

Search Result 104, Processing Time 0.026 seconds

A Study on the Multi-level PV-PCS Using Cascade 3-Phase Transformer (직렬형 3상 변압기를 이용한 다중레벨 PV-PCS)

  • Kim, Ki-Seon;Song, Sung-Geun;Cho, Su-Eog;Choi, Joon-Ho;Kim, Kwang-Heon;Park, Sung-Jun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.12
    • /
    • pp.2359-2369
    • /
    • 2009
  • The study on the multi-level inverter has been increasingly progressing to reduce the switching loss and improve the THD of output current in photovoltaic inverter. Recently, the main topics of multi-level inverter are to reduce the number of devices maintaining the power quality. Therefore, the novel topology was proposed for these problem which is composed of the isolated H-bridge multi-level inverter using the three phase low frequency transformer. The proposed multi-level inverter may not be need for a independent DC power, diode and capacitor. Specially, It has a advantage in generating high voltage source. The proposed approach is verified through simulation and experiment.

Single Phase 5-level Inverter with DC-link Switches (DC링크 스위치를 갖는 단상 5레벨 인버터)

  • Choi, Young-Tae;Sun, Ho-Dong;Park, Min-Young;Kim, Heung-Geun;Chun, Tea-Won;Nho, Eui-Cheol
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.16 no.3
    • /
    • pp.283-292
    • /
    • 2011
  • This paper proposed a new multi-level inverter topology based on a H-bridge with two switches and two diodes connected to the DC-link. The output voltage of the proposed topology is quite closer to a sinusoidal waveform compared with a typical single phase inverter. The proposed multi-level inverter is applicable to a power conditioning system for renewable energy sources, and it can be also used as a building block of a cascaded multi-level inverter for a high voltage application. In case of conventional H-bridge type or NPC type multi-level inverter, 8 controllable switches are used to obtain a 5 level output voltage, but the proposed multi-level inverter requires only 6 controllable switches. Thus the circuit configuration is quite simple, reliable and cost-effective implementation is possible. The efficiency can be improved owing to the reduction of the switching loss. A new PWM method based on POD modulation is suggested which requires only one carrier signal. The switching sequence to make the capacitor voltage balanced is also considered. The feasibility is studied through simulation and experiment.

Power Conditioning for a Small-Scale PV System with Charge-Balancing Integrated Micro-Inverter

  • Manoharan, Mohana Sundar;Ahmed, Ashraf;Seo, Jung-Won;Park, Joung-Hu
    • Journal of Power Electronics
    • /
    • v.15 no.5
    • /
    • pp.1318-1328
    • /
    • 2015
  • The photovoltaic (PV) power conditioning system for small-scale applications has gained significant interest in the past few decades. However, the standalone mode of operation has been rarely approached. This paper presents a two-stage multi-level micro-inverter topology that considers the different operation modes. A multi-output flyback converter provides both the DC-Link voltage balancing for the multi-level inverter side and maximum power point tracking control in grid connection mode in the PV stage. A modified H-bridge multi-level inverter topology is included for the AC output stage. The multi-level inverter lowers the total harmonic distortion and overall ratings of the power semiconductor switches. The proposed micro-inverter topology can help to decrease the size and cost of the PV system. Transient analysis and controller design of this micro-inverter have been proposed for stand-alone and grid-connected modes. Finally, the system performance was verified using a 120 W hardware prototype.

Unification of Buck-boost and Flyback Converter for Driving Cascaded H-bridge Multilevel Inverter with Single Independent DC Voltage Source

  • Kim, Seong-Hye;Kim, Han-Tae;Park, Jin-Soo;Kang, Feel-Soon
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.2 no.2
    • /
    • pp.190-196
    • /
    • 2013
  • It presents a unification of buck-boost and flyback converter for driving a cascaded H-bridge multilevel inverter with a single independent DC voltage source. Cascaded H-bridge multilevel inverter is useful to make many output voltage levels for sinusoidal waveform by combining two or more H-bridge modules. However, each H-bridge module needs an independent DC voltage source to generate multi levels in an output voltage. This topological characteristic brings a demerit of increasing the number of independent DC voltage sources when it needs to increase the number of output voltage levels. To solve this problem, we propose a converter combining a buck-boost converter with a flyback converter. The proposed converter provides independent DC voltage sources at back-end two H-bridge modules. After analyzing theoretical operation of the circuit topology, the validity of the proposed approach is verified by computer-aided simulations using PSIM and experiments.

Dynamic Characteristic Analysis of SSSC Based on Multi-bridge PAM Inverter

  • Han Byung-Moon;Kim Hee-Joong;Baek Seung-Taek
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.539-545
    • /
    • 2001
  • This paper proposes a static synchronous series compensator based on multi-bridge inverter. The proposed system consists of 6 H-bridge modules per phase, which generate 13 pulses for each half period of power frequency. The dynamic characteristic was analyzed by simulations with EMTP code, assuming that it is inserted in the 154-kV transmission line of one-machine-infinite-bus power system. The feasibility of hardware implementation was verified through experimental works using a scaled model. The proposed system does not require a coupling transformer for voltage injection, and has flexibility in expanding the operation voltage by increasing the number of H-bridge modules.

  • PDF

3-Phase Transformer Isolated Multi-level Inverter Using Common Arm (공통암을 이용한 3상 변압기 절연 멀티레벨 인버터)

  • Song, Sung-Geun;Park, Sung-Jun;Kim, Dong-Ok;Lim, Young-Cheol;Kim, Kwang-Heon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.12 no.2
    • /
    • pp.149-156
    • /
    • 2007
  • The number of transformer and the size of transformer in inverter using 3-phase transformer could be reduced compare with a multi-level inverter using single phase transformer. but still the 3-phase transformer inverter needs many switches. In this study, we proposed the isolated multi-level inverter using 3-phase transformers and common arm, in this paper. Also, using phase angle control method with switching frequency equal to output fundamental frequency, harmonics component of output voltage and switching loss can be reduced. Finally, We tested multi-level inverter to clarify electric circuit md reasonableness through Matlab simulation and experiment by using prototype inverter.

A New Simplified Vector Control For A High Performance Common-Arm IHCML Inverter (고성능 공통암 IHCML 인버터를 위한 새로운 벡터 제어 방식)

  • Song, Sung-Geun;Park, Sung-Jun;Nam, Hae-Kon;Kim, Kwang-Heon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.6
    • /
    • pp.1071-1079
    • /
    • 2007
  • In this paper, a novel space vector control method for isolated multi-level inverter using 3-phase low frequency transformers is proposed. This method is based on the simplification of the space-vector diagram of a five-level inverter using calculated table into fully programming method. The execution time of the proposed method is about same as that of the method using calculated table. Also, the proposed method is easily applied to other case level inverter. We applied this method into the 3-phase IHCML inverter using common arm. It makes possible to use a single DC power source due to employing low frequency transformers. In this inverter, the number of transformers could be reduced compare with an exiting 3-phase multi-level inverter using single phase transformer. In addition, this method generates very low harmonic distortion operation with nearly fundamental switching frequency. Finally, We tested multi-level inverter to clarify electric circuit and reasonableness through Matlab simulation and experiment by using prototype inverter.

Analysis and simulation of Cascaded H-bridge 7 level inverter for eliminating typical harmonic waveforms (특정 고조파 제거를 위한 Cascaded H-bridge 7레벨 인버터의 특성해석 및 시뮬레이션)

  • Jin, Sun-Ho;Oh, Jin-Suk;Jo, Kwan-Jun;Kwak, Jun-Ho;Lim, Myoung-Kyu;Kim, Jang-Mok
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2005.06a
    • /
    • pp.1022-1028
    • /
    • 2005
  • This paper is presented the analysis results and simulation results of cascaded H-bridge 7 level inverter with various modulation index. Stepped waveform having number of switching was used to eliminate harmonic components. Switching angles according to modulation index are calculated numerically. Therefore, 3 times of switching with 7 level topology and QWS(Quarter Wave Symmetry) could eliminate 5th and 7th harmonics. The harmonic characteristics are compared to those of space vector modulation method which known as common modulation method in industrial field. Stepped waveform method showed higher ability to reduce, especially lower order of harmonics.

  • PDF

Cascaded Multi-Level Inverter Based IPT Systems for High Power Applications

  • Li, Yong;Mai, Ruikun;Yang, Mingkai;He, Zhengyou
    • Journal of Power Electronics
    • /
    • v.15 no.6
    • /
    • pp.1508-1516
    • /
    • 2015
  • A single phase H-bridge inverter is employed in conventional Inductive Power Transfer (IPT) systems as the primary side power supply. These systems may not be suitable for some high power applications, due to the constraints of the power electronic devices and the cost. A high-frequency cascaded multi-level inverter employed in IPT systems, which is suitable for high power applications, is presented in this paper. The Phase Shift Pulse Width Modulation (PS-PWM) method is proposed to realize power regulation and selective harmonic elimination. Explicit solutions against phase shift angle and pulse width are given according to the constraints of the selective harmonic elimination equation and the required voltage to avoid solving non-linear transcendental equations. The validity of the proposed control approach is verified by the experimental results obtained with a 2kW prototype system. This approach is expected to be useful for high power IPT applications, and the output power of each H-bridge unit is identical by the proposed approach.

Multi-level Inverter for reducing of switching component (스위칭 수 저감을 위한 다중레벨 인버터)

  • Lee, I.H.;Song, S.G.;Lee, S.H.;Park, S.J.;Nam, H.G.;Chung, H.D.;Chang, Y.H.
    • Proceedings of the KIPE Conference
    • /
    • 2005.07a
    • /
    • pp.711-714
    • /
    • 2005
  • In this paper, we proposed the electric circuit using one common arm of H-Bridge Inverters to reduce the number of switching component in multi-level PWM inverter combined with H-Bridge Inverters and Transformers. and we proposed the switching method that can be same rate of usage at each transformer. Also, we tested the proposed prototype inverter to clarify the proposed electric circuit and reasonableness of control signal.

  • PDF