• Title/Summary/Keyword: Multi-Spectral Camera

Search Result 121, Processing Time 0.027 seconds

AN EXPERIMENTAL STUDY ON THE ESTABLISHMENT OF PRODUCT VALIDATION SITE AND THE RELATED ACTIVITIES

  • Lee Kwangjae;Kim Younsoo;Kim Yongseung;Hoersch Bianca
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.426-429
    • /
    • 2005
  • In order to evaluate KOrea Multi-Purpose SATellite (KOMPSAT) application products and develop the multi-sensor data application technologies, the Product Validation Site (PVS) will be designed and constructed by Korea Aerospace Research Institute (KARI). Also KARl has a plan for acquisition of multi-sensor data such as ENVISAT ASAR and Project for On Board Autonomy (PROBA) Compact High Resolution Imaging Spectrometer (CHRIS) data through international cooperation with European Space Agency (ESA). These data will be utilized with KOMPSAT-2 Multi-Spectral Camera (MSC) data. KARI and ESA have identified a mutual interest in creating synergy in the joint exploitation of Earth Observation data for science and applications both in Korea and Europe. This paper summarizes the status of joint experimental studies between KARI and ESA for further applications and presents some expected results from related activities.

  • PDF

Implementation of Communication Unit for KOMPSAT-II (다목적실용위성 2호기의 통신 부호화기 구현)

  • 이상택;이종태;이상규
    • Proceedings of the IEEK Conference
    • /
    • 2003.11c
    • /
    • pp.378-381
    • /
    • 2003
  • The Channel Coding Unit (CCU) is an integral component of Payload Data Transmission System (PDTS) for the Multi-Spectral Camera (MSC) data. The main function of the CCU is channel coding and encryption. CCU has two channels (I & Q) for data processing. The input of CCU is the output of DCSU (Data Compression & Storage Unit). The output of CCU is the input of QTX which modulate data for RF communication. In this paper, there are the overview, short H/W description and operation concept of CCU.

  • PDF

KOMPSAT MSC 영상을 이용한 임상분류 알고리즘 변별력 실증 연구

  • Jo, Yun-Won;Kim, Seong-Jae;Jo, Myeong-Hui
    • Proceedings of the KSRS Conference
    • /
    • 2009.03a
    • /
    • pp.3-6
    • /
    • 2009
  • 본 연구에서는 경주시 내남면 일대를 대상으로 KOMPSAT MSC(Multi Spectral Camera) 영상(2007.06.12)을 이용하여 TCT(Tasseled-Cap Transformation), NDVI(Normalized Difference Vegetation Index) 알고리즘을 적용하여 분포도를 작성 하였으며 TCT DN 값을 기초로 영상 강조 및 변환을 통한 임상분류에 적합한 밴드 추출과 NDVI 분포도에서의 DN값을 기초로 산림현장 조사 결과에서 취득된 결과와의 비교 분석을 통하여 알고리즘에 대한 임상분류에 있어서의 변별력 분석을 수행하였다. 본 연구를 통하여 KOMPSAT MSC 영상에서의 임상분류를 위한 식생 알고리즘 적용 가능성을 검토하고자 한다.

  • PDF

Development of High Speed Satellite Data Acquisition System

  • Choi, Wook-Hyun;Park, Sang-Jin;Seo, In-Seok;Park, Won-Kyu
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.280-282
    • /
    • 2003
  • The downlink data rates of the space-born payloads such as high-resolution optical cameras, synthetic aperture radars (SAR) and hyper-spectral sensors are being rapidly increased. For example, the image transmission rates of KOMPSAT-2 MSC(Multi-Spectral Camera) is 320Mbps even if on-board image compression scheme is used.[1] In the near future, the data rates are expected to be a level 500${\sim}$600Mbps because the required resolution will be higher and the swath width will be increased. This paper describes many techniques they enable 500Mbps data receiving and archiving system.

  • PDF

Multi-spectral Imaging-based Color Image Reconstruction Using the Conventional Bayer CFA (베이어 CFA 카메라를 사용한 다중 스펙트럼 기반 컬러영상 생성 기술)

  • Shin, Jeong-Ho
    • Journal of Broadcast Engineering
    • /
    • v.16 no.3
    • /
    • pp.561-565
    • /
    • 2011
  • This paper presents an imaging system for reconstruction of enhanced color images using the conventional Bayer CFA. By extracting various colors such as RGBCY from two sequential images which consist of a image by broadband G channel lens filter and the other image captured without one, the proposed color image reconstruction system can reduce the computational complexity for demosaicking and make high resolution color information without aliasing artifacts. Because the proposed system uses the common Bayer CFA image sensor, fabricating a new type of CFA is not necessary for obtaining a multi-spectral image, which can be easily extensible for applications of multi-spectral imaging. Finally, in order to verify the performance of the proposed system, experimental results are performed. By comparing with the existing demosaicking methods, the proposed camera system showed the significant improvements in the sense of color resolution.

The study of environmental monitoring by science airship and high accuracy digital multi-spectral camera

  • Choi, Chul-Uong;Kim, Young-Seop;Nam, Kwang-Woo
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.750-750
    • /
    • 2002
  • The Airship PKNU is a roughly 12 m (32 ft) long blimp, filled with helium, whose two-gasoline power(3hp per engine) are independently radio controlled. The motors and propellers can be tilted and are attached to the gondola through an axle and supporting braces. Four stabilizing fins are mounted at the tail of the airship. To fill in the helium, a valve is placed at the bottom of the hull. The inaugural flight was on jul. 31.2002 at the Pusan, S.korea Most environment monitoring system\ problem use satellite image. But, Low resolution satellite image (multi-spectral) : 1km ∼ 250 m ground resolutions is lows. So, detail information acquisition is hard at the complex terrain. High resolution satellite image (black and white) 30m : The ground resolution is high. But it is high price, visit cycle and delivery time is long So. We want make high accuracy airship photogrammetry system. This airship can catch picture Multi. spectral Aerial photographing (visible, Near infrared and thermal infrared), and High resolution (over 6million pixel). It can take atmosphere datum (Temperature (wet bulb, dew point, general), Pressure (static, dynamic), Humidity, wind speed). this airship is very Quickness that aircraft install time is lower than 30 minutes, it is compact and that conveyance is easy. High-capacity save image (628 cut per 1time (over 6million and 4band(R,G,B,NIR)) and this airship can save datum this High accuracy navigatin (position and rotate angle) by DGPS tech. and Gyro system. this airship will do monitor about red-tide, sea surface temperate, and CH-A, SS and etc.

  • PDF

THE ANALYSIS OF PSM (POWER SUPPLY MODULE) FOR MULTI-SPECTRAL CAMERA IN KOMPSAT

  • Park Jong-Euk;Kong Jong-Pil;Heo Haeng-Pal;Kim Young Sun;Chang Young Jun
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.493-496
    • /
    • 2005
  • The PMU (Payload Management Unit) in MSC (Multi-Spectral Camera) is the main subsystem for the management, control and power supply of the MSC payload operation. The PMU shall handle the communication with the BUS (Spacecraft) OBC (On Board Computer) for the command, the telemetry and the communications with the various MSC units. The PMU will perform that distributes power to the various MSC units, collects the telemetry reports from MSC units, performs thermal control of the EOS (Electro-Optical Subsystem), performs the NUC (Non-Uniformity Correction) function of the raw imagery data, and rearranges the pixel data and output it to the DCSU (Data Compression and Storage Unit). The BUS provides high voltage to the MSC. The PMU is connected to primary and redundant BUS power and distributes the high unregulated primary voltages for all MSC sub-units. The PSM (Power Supply Module) is an assembly in the PMU implements the interface between several channels on the input. The bus switches are used to prevent a single point system failure. Such a failure could need the PSS (Power Supply System) requirement to combine the two PSM boards' bus outputs in a wired-OR configuration. In such a configuration if one of the boards' output gets shorted to ground then the entire bus could fail thereby causing the entire MSC to fail. To prevent such a short from pulling down the system, the switch could be opened and disconnect the short from the bus. This switch operation is controlled by the BUS.

  • PDF

An Empirical Study on Discrimination of Image Algorithm for Improving the Accuracy of Forest Type Classification -Case of Gyeongju Area Using KOMPSAT-MSC Image Data- (임상 분류 정확도 향상을 위한 영상 알고리즘 변별력 실증 연구 -KOMPSAT-MSC를 이용한 경주지역을 대상으로-)

  • Jo, Yun-Won;Kim, Sung-Jae;Jo, Myung-Hee
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.17 no.2
    • /
    • pp.55-60
    • /
    • 2009
  • By applying NDVI(Normalized Difference Vegetation Index) and TCT(Tasseled-Cap Transformation) image algorithm on the basis of KOMSAP-2 MSC(Multi Spectral Camera) image(Jun. 12, 2007) for Naenam-myeon, Gyeongju city in this study, DN distribution map was drawn up. Discrimination analysis of image algorithm for the accuracy improvement of forest type classification was conducted through the comparative analysis between the distribution maps of NDVI and TCT DN, and forest field surveying data, and finally, the accuracy of the forest type classification was verified through the overlay analysis with the forest field surveying data. Through this study, it is thought that low cost and high efficiency will be able to be expected in the process of the examination for the automation practicality of the forest type classification and of the production of the accurate forest type classification map by using KOMPSAT-2 MSC image.

  • PDF

Video data output system design for CEU (camera electronic unit) of satellite

  • Park, Jong-Euk;Kong, Jong-Pil;Yong, Sang-Soon;Heo, Haeng-Pal;Kim, Young-Sun;Paik, Hong-Yul
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.1118-1120
    • /
    • 2003
  • In MSC(Multi-spectral camera ), the incoming light is converted to electronic analog signals by the CCD(charge coupled device) detectors. The analog signals are amplified, biased and converted into digital signals (pixel data stream) in the FPE(Focal plane electronics ). The digital data is transmitted to the PMU for pre-processing to correct for nonuniformity, to partially reorder the pixel stream and to add header data for identification and synchronization In this paper, the video data streams is described in terms of hardware.

  • PDF

AKARI OBSERVATIONS OF THE INTERSTELLAR MEDIUM

  • Onaka, Takashi
    • Publications of The Korean Astronomical Society
    • /
    • v.27 no.4
    • /
    • pp.187-193
    • /
    • 2012
  • AKARI has 4 imaging bands in the far-infrared (FIR) and 9 imaging bands that cover the near-infrared (NIR) to mid-infrared (MIR) contiguously. The FIR bands probe the thermal emission from sub-micron dust grains, while the MIR bands observe emission from stochastically-heated very small grains and the unidentified infrared (UIR) band emissions from carbonaceous materials that contain aromatic and aliphatic bonds. The multi-band characteristics of the AKARI instruments are quite efficient to study the spectral energy distribution of the interstellar medium, which always shows multi-component nature, as well as its variations in the various environments. AKARI also has spectroscopic capabilities. In particular, one of the onboard instruments, Infrared Camera (IRC), can obtain a continuous spectrum from 2.5 to $13{\mu}m$ with the same slit. This allows us to make a comparative study of the UIR bands in the diffuse emission from the 3.3 to $11.3{\mu}m$ for the first time. The IRC explores high-sensitivity spectroscopy in the NIR, which enables the study of interstellar ices and the UIR band emission at $3.3-3.5{\mu}m$ in various objects. Particularly, the UIR bands in this spectral range contain unique information on the aromatic and aliphatic bonds in the band carriers. This presentation reviews the results of AKARI observations of the interstellar medium with an emphasis on the observations of the NIR spectroscopy.