• Title/Summary/Keyword: Multi-Resolution Model

Search Result 285, Processing Time 0.023 seconds

GEOSTATISTICAL UNCERTAINTY ANALYSIS IN SEDIMENT GRAIN SIZE MAPPING WITH HIGH-RESOLUTION REMOTE SENSING IMAGERY

  • Park, No-Wook;Chi, Kwang-Hoon
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.225-228
    • /
    • 2007
  • This paper presents a geostatistical methodology to model local uncertainty in spatial estimation of sediment grain size with high-resolution remote sensing imagery. Within a multi-Gaussian framework, the IKONOS imagery is used as local means both to estimate the grain size values and to model local uncertainty at unsample locations. A conditional cumulative distribution function (ccdf) at any locations is defined by mean and variance values which can be estimated by multi-Gaussian kriging with local means. Two ccdf statistics including condition variance and interquartile range are used here as measures of local uncertainty and are compared through a cross validation analysis. In addition to local uncertainty measures, the probabilities of not exceeding or exceeding any grain size value at any locations are retrieved and mapped from the local ccdf models. A case study of Baramarae beach, Korea is carried out to illustrate the potential of geostatistical uncertainty modeling.

  • PDF

생산제어시스템의 시뮬레이션모델 자동생성

  • 이상훈;조현보;정무영
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 1996.04a
    • /
    • pp.631-634
    • /
    • 1996
  • This paper describes an intelligent user interface to define simulation models from the process and resource models. It also explains an automatic program generator of discrete event simulation model for shop floor control in a flexible manufacturing system. Especially, the paper is focused on the design and development of methodology to automate simulation modeling from the system description. Describing a shop floor control system in simulation is not an easy task since it must resolve various decision problems such as deadlock resolution, part dispatching, resource conflict resolution, etc. The program generator should be capable of constructing a complete discrete simulation models for a multi-product and multi-stage flow shop containing the above mentioned problems.

  • PDF

Design and Implementation of the Multi-resolution Interoperation Simulation using HLA/RTI (표준연동 아키텍처(HLA/RTI)기반 다해상도 연동 시뮬레이션 설계 및 구현)

  • Lee, Sangtae;Lee, Seungyoung;Hwang, Kun-Chul;Kim, Saehwan
    • Journal of the Korea Society for Simulation
    • /
    • v.24 no.1
    • /
    • pp.9-16
    • /
    • 2015
  • In this paper, the multi-resolution simulation of standard linkage architecture is consists of the engineering-level (QUEST), engagement-level (SADM), the mission-level (EADSIM). It was developed the engineering-level model using battle experiment integrated development environment in the battle experimental engineering system. The engagement level model was developed using the SADM and the mission-level model was developed using EADSIM. The standard linkage architecture is designed and implemented in order to interlocking model of multiple layers. Each different simulation programs in a distributed environment was designed by HLA interface specifications for satisfying interworking. Also the integrated interoperation gateway was developed for relaying the each different simulation programs. The effective naval weapon system for measure of effectiveness develops using to improve the fidelity of the model between the various layers through multi-resolution interoperation simulation. According to the operator requirement is quickly battlefield environment can be constructed. The other simulation program that being designed through standards linkage architecture can linkage easily and efficiently.

A Study on the Generation and Processing of Depth Map for Multi-resolution Image Using Belief Propagation Algorithm (신뢰확산 알고리즘을 이용한 다해상도 영상에서 깊이영상의 생성과 처리에 관한 연구)

  • Jee, Innho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.15 no.6
    • /
    • pp.201-208
    • /
    • 2015
  • 3D image must have depth image for depth information in order for 3D realistic media broadcasting. We used generally belief propagation algorithm to solve probability model. Belief propagation algorithm is operated by message passing between nodes corresponding to each pixel. The high resolution image will be able to precisely represent but that required much computational complexity for 3D representation. We proposed fast stereo matching algorithm using belief propagation with multi-resolution based wavelet or lifting. This method can be shown efficiently computational time at much iterations for accurate disparity map.

Korean Coreference Resolution with Guided Mention Pair Model Using Deep Learning

  • Park, Cheoneum;Choi, Kyoung-Ho;Lee, Changki;Lim, Soojong
    • ETRI Journal
    • /
    • v.38 no.6
    • /
    • pp.1207-1217
    • /
    • 2016
  • The general method of machine learning has encountered disadvantages in terms of the significant amount of time and effort required for feature extraction and engineering in natural language processing. However, in recent years, these disadvantages have been solved using deep learning. In this paper, we propose a mention pair (MP) model using deep learning, and a system that combines both rule-based and deep learning-based systems using a guided MP as a coreference resolution, which is an information extraction technique. Our experiment results confirm that the proposed deep-learning based coreference resolution system achieves a better level of performance than rule- and statistics-based systems applied separately

Evaluation of Spatio-temporal Fusion Models of Multi-sensor High-resolution Satellite Images for Crop Monitoring: An Experiment on the Fusion of Sentinel-2 and RapidEye Images (작물 모니터링을 위한 다중 센서 고해상도 위성영상의 시공간 융합 모델의 평가: Sentinel-2 및 RapidEye 영상 융합 실험)

  • Park, Soyeon;Kim, Yeseul;Na, Sang-Il;Park, No-Wook
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.5_1
    • /
    • pp.807-821
    • /
    • 2020
  • The objective of this study is to evaluate the applicability of representative spatio-temporal fusion models developed for the fusion of mid- and low-resolution satellite images in order to construct a set of time-series high-resolution images for crop monitoring. Particularly, the effects of the characteristics of input image pairs on the prediction performance are investigated by considering the principle of spatio-temporal fusion. An experiment on the fusion of multi-temporal Sentinel-2 and RapidEye images in agricultural fields was conducted to evaluate the prediction performance. Three representative fusion models, including Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM), SParse-representation-based SpatioTemporal reflectance Fusion Model (SPSTFM), and Flexible Spatiotemporal DAta Fusion (FSDAF), were applied to this comparative experiment. The three spatio-temporal fusion models exhibited different prediction performance in terms of prediction errors and spatial similarity. However, regardless of the model types, the correlation between coarse resolution images acquired on the pair dates and the prediction date was more significant than the difference between the pair dates and the prediction date to improve the prediction performance. In addition, using vegetation index as input for spatio-temporal fusion showed better prediction performance by alleviating error propagation problems, compared with using fused reflectance values in the calculation of vegetation index. These experimental results can be used as basic information for both the selection of optimal image pairs and input types, and the development of an advanced model in spatio-temporal fusion for crop monitoring.

Development of the Selective Boolean Operations on Non-Manifold Models (교환법칙을 만족하는 비다양체 모델의 선택적 불리안 작업의 개발)

  • 이상헌;이강수;박상근
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.836-839
    • /
    • 2002
  • This paper describes the selective Boolean operations on non-manifold geometric models whose union and subtraction operations are communicative. These operations guarantee the same resulting shape in spite of change of the order of Boolean operations, and the integrity of the model for omission of some features. In addition, a B-rep model for a modified modeling history is obtained in a short time, as no boundary evaluation is necessary. These features enable easy implementation of multi-resolution representation of B-rep models.

  • PDF

A Variational Framework for Single Image Dehazing Based on Restoration

  • Nan, Dong;Bi, Du-Yan;He, Lin-Yuan;Ma, Shi-Ping;Fan, Zun-Lin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.3
    • /
    • pp.1182-1194
    • /
    • 2016
  • The single image dehazing algorithm in existence can satisfy the demand only for improving either the effectiveness or efficiency. In order to solve the problem, a novel variational framework for single image dehazing based on restoration is proposed. Firstly, the initial atmospheric scattering model is transformed to meet the kimmel's Retinex variational model. Then, the green light component of image is considered as an input of the variational framework, which is generated by the sensitivity of green wavelength. Finally, the atmospheric transmission map is achieved by multi-resolution pyramid reduction to improve the visual effect of the results. Experimental results demonstrate that the proposed method can remove haze effectively with less memory consumption.

A Geometric Active Contour Model Using Multi Resolution Level Set Methods (다중 해상도 레벨 세트 방식을 이용한 기하 활성 모델)

  • Kim, Seong-Gon;Kim, Du-Yeong
    • The Transactions of the Korea Information Processing Society
    • /
    • v.6 no.10
    • /
    • pp.2809-2815
    • /
    • 1999
  • Level set, and active contour(snakes) models are extensively used for image segmentation or shape extraction in computer vision. Snakes utilize the energy minimization concepts, and level set is based on the curve evolution in order to extract contours from image data. In general, these two models have their own drawbacks. For instance, snake acts pooly unless it is placed close to the wanted shape boundary, and it has difficult problem when image has multiple objects to be extracted. But, level set method is free of initial curve position problem, and has ability to handle topology of multiple objects. Nevertheless, level set method requires much more calculation time compared to snake model. In this paper, we use good points of two described models and also apply multi resolution algorithm in order to speed up the process without decreasing the performance of the shape extraction.

  • PDF

Study of Improved CNN Algorithm for Object Classification Machine Learning of Simple High Resolution Image (고해상도 단순 이미지의 객체 분류 학습모델 구현을 위한 개선된 CNN 알고리즘 연구)

  • Hyeopgeon Lee;Young-Woon Kim
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.16 no.1
    • /
    • pp.41-49
    • /
    • 2023
  • A convolutional neural network (CNN) is a representative algorithm for implementing artificial neural networks. CNNs have improved on the issues of rapid increase in calculation amount and low object classification rates, which are associated with a conventional multi-layered fully-connected neural network (FNN). However, because of the rapid development of IT devices, the maximum resolution of images captured by current smartphone and tablet cameras has reached 108 million pixels (MP). Specifically, a traditional CNN algorithm requires a significant cost and time to learn and process simple, high-resolution images. Therefore, this study proposes an improved CNN algorithm for implementing an object classification learning model for simple, high-resolution images. The proposed method alters the adjacency matrix value of the pooling layer's max pooling operation for the CNN algorithm to reduce the high-resolution image learning model's creation time. This study implemented a learning model capable of processing 4, 8, and 12 MP high-resolution images for each altered matrix value. The performance evaluation result showed that the creation time of the learning model implemented with the proposed algorithm decreased by 36.26% for 12 MP images. Compared to the conventional model, the proposed learning model's object recognition accuracy and loss rate were less than 1%, which is within the acceptable error range. Practical verification is necessary through future studies by implementing a learning model with more varied image types and a larger amount of image data than those used in this study.