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Abstract 
 

The single image dehazing algorithm in existence can satisfy the demand only for improving 
either the effectiveness or efficiency. In order to solve the problem, a novel variational 
framework for single image dehazing based on restoration is proposed. Firstly, the initial 
atmospheric scattering model is transformed to meet the kimmel’s Retinex variational model. 
Then, the green light component of image is considered as an input of the variational 
framework, which is generated by the sensitivity of green wavelength. Finally, the 
atmospheric transmission map is achieved by multi-resolution pyramid reduction to improve 
the visual effect of the results. Experimental results demonstrate that the proposed method can 
remove haze effectively with less memory consumption. 
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1. Introduction 

As one of the most important topics and basic issues in image processing, single image 
dehazing aims at two aspects. One is creating visually-pleasing images for human visual 
perception, and the other is improving the interpretability of information in images for 
computer vision serving and for the pre-processing tasks. Thus, advanced techniques for 
single image dehazing are in urgent need. The existing papers can be divided into two 
categories. 

One scheme based on image enhancement technique aims at improving the visual effect of 
image directly, such as gamma correction [1], histogram equalization [2], and Retinex [3]. 
This scheme is fast and simple but has strong pertinence and can hardly adjust all image 
characteristics to a proper range simultaneously, according to human vision system. The other 
one is based on image restoration technique. Modeling around atmospheric transmission and 
environmental luminance make it possible to solve the problem caused by the atmospheric 
scattering model which has the ill-posedness, with the strong prior or assumption. In terms of 
the solving methods, the second scheme can be further divided into two groups: one is based 
on the statistical prior and the other on the objective assumption. 

The first group is originated from CVPR 2009, when He [4]’s Dark Channel Prior (DCP) 
achieved the best paper in the conference and made significant progresses in single image haze 
removal. His method does not rely on significant variance on transmission or surface shading 
in the input image and the output image is less affected by halos than before. It works for most 
outdoor scenes, except when the object is inherently similar to the airlight over a large location 
and no shadow is cast on the object. Then, Codruta [5] produces a semi-inverse of the image in 
2010, based on the analysis of hue disparity between the original image and its semi-inverse, 
which improves the haze removal performance greatly. This method proposes a simple 
estimation of the airlight constant and the transmission map, but may cause the phenomenon 
of excessive enhancement. Therefore, it’s hard to find the appropriate statistical prior for the 
former; the other group is reconsidered in recent years. Carr [6] assumes that objects which 
appear towards the top of the image are usually further away, based on a projection model 
from 3D to 2D. This soft constraint is compatible with the alpha-expansion optimization 
technique and can be used to improve the robustness of any single image dehazing technique, 
but can’t adapt to the dynamic range of human vision system. In 2011, Gibson [7] assumes that 
the RGB channels in haze-free image are based on the elliptical distribution. This approach 
has a visually compelling result but may not perform well on heavy hazy images and tend to be 
fail in prospect. 

By analyzing the recent dehazing algorithms based on image restoration [8], we found that 
most algorithms only consider the statistical prior or objective assumption of degraded image 
separately; however, settling of the atmospheric scattering model with prior and assumption 
simultaneously is more important, and more powerful. 

In this paper, we propose a novel prior “sensitivity of green wavelength”, and use an 
important assumption “variational framework” for our approach at the same time. The 
sensitivity of green wavelength is based on the statistics of hazy outdoor images. We find that, 
in the green light component of image of hazy outdoor images, there are more details and 
distant objects than others in the results. Based on the variational framework, it shows that the 
transmission map estimation problem can be formulated as an efficient multi-resolution 
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algorithm, which is proposed to exploit the spatial correlation. Combining the atmospheric 
scattering model and the Retinex algorithm, we can produce a good transmission map directly 
and recover a high-quality haze-free image. 

2. Related Work 
In this section, we will briefly summarize the atmospheric scattering model and the Retinex 
algorithm, which are the foundation of our approach. In order to find out the applicable model 
with the most potential for real-time processing without sacrificing too much of the image 
quality, we draw attention to the models in existence. Among these, the McCartney’s model is 
widely used to describe the formation of a degraded image, which can be showed as follows 
[9]: 

 
( , ) ( , ) ( , ) (1 ( , ))I x y t x y J x y t x y A= + −                                      (1) 

 
where I(x, y) denotes the observed degraded image, J(x, y) denotes the scene radiance, which 
represents original appearance of image, A denotes the global atmospheric light, which is 
mostly recognized as the pixel with the highest intensity in the image, t(x, y) is the atmospheric 
transmission map. Then the problem is simplified as how to estimate the latent image J(x, y) 
from the hazy input I(x, y) when no additional information about depth and airlight is given, as 
it is an abnormal equations.  

As the computational model, the Retinex algorithm considers that visual perception by 
human eyes does not depend on the light reflected by the object, but correlates with integrated 
reflectance. The formation of an input image I can be decomposed into two parts: the 
reflectance image R and the illumination image L, such that at each pixel I(x, y) =R(x, y) × L(x, 
y). The benefits of such decomposition include the ability to remove illumination effects of 
back/front air-lighting, and lead to improve the brightness, contrast and high dynamic range of 
image. Retinex algorithms can convert the three components to logarithmic domain, with the 
multiplication changing into addition, which is: i=l+ r; i=log(I), l=log(L), r=log(R). 

Recovering the illumination from a given image is known to be a mathematically ill-posed 
problem. In order to alleviate this problem, additional assumptions on the unknowns are 
required. Kimmel’s Retinex variational framework to the ill-posed problem is introduced and 
compared to other state-of-the-art methods, which relies on the following assumptions about 
the illumination image [10]: 

(1) The illumination is spatially smooth. 
(2) Since R is restricted to the unit interval, we can add the constraint L ≥ S. As the log 

function is monotone, we also have l ≥ s. 
(3) The illumination image is close to the input image. It minimizes a penalty term of the 

form dist (l, s), e.g., the L2 norm (l − s) 2. 
(4) The illumination continues smoothly as a constant beyond the image boundaries. 
The connection between the atmospheric scattering model and the Retinex algorithm was 

found in the next section. Collecting all the above assumptions into one expression, the penalty 
function is defined as Eq.(5). 
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3. Our Approach 

3.1 The Variational Framework 
The key to our approach is that it combines the best of both factors: the effectiveness of 
variational framework with the rapidity of multi-resolution pyramid reduction, and the 
sensitivity of the green light component. Our approach can be decomposed into three steps: the 
establishment of the variational framework, the estimation of our variational framework’s 
input, and the solution of our variational framework. 

Rearrangeing Eq.(1), we find the following expression: 
 

( , ) ( ( , ) ) ( , )I x y A J x y A t x y− = −                                         (2) 
 

In natural scene, the brightest pixel could be from a white car or a white building, so we 
assume A as the mean of the top 0.6% brightest pixels in the hazy image [11]. In order to keep 
Eq.(2) non-negative, we reverse it: 

 
( , ) ( , ) ( , )A AI x y J x y t x y=                                             (3) 

 
where IA(x, y) = A-I(x, y), JA(x, y) = A-J(x, y). Then Eq.(2) is converted to logarithmic domain, 
with the multiplication changing into addition: 

 
'

A Ai j t= +                                                          (4) 
 

where iA=In(IA(x, y)), jA=In(JA(x, y)), t’=In(t(x, y)). According to Kimmel’s Retinex algorithm, 
the inverse-reflectance image jA is considered as the same meaning of the illumination image. 
Then we brought about the variational framework via the following penalty function to 
estimate the transmission [10]: 

 

( ) 22 2' ' ' '

' '

min ( )

. . , 0

A A

A

F t t t i t i dxdy

s t t i and t n on

a β
Ω

  = ∇ + − + ∇ − 

≥ ∇ = ∂Ω

∫
d

                (5) 

 
where Ω is the support of the image, ∂Ω is its boundary, n

d

 is the normal to the boundary, α and 
β are free non-negative real parameters. Three penalty terms force t’ to be smooth, t’ and iA to 
be proximal, and jA to be smooth respectively. 

Global spatial smoothness of the image is the basic assumption in the atmospheric 
transmission map. Especially, the third item in Eq.(5) assures the inverse-reflectance’s 
smoothness. However, this Bayesian penalty expression is bound to lose detail and edge 
information. Because such 2't∇ as the smoothness’ realization focuses much on decreasing 
the gradient norm, and will impose bad effects causing discontinuous jump in jA. As it is forced 
upon in Kimmel’s algorithm, it will blur jA and cause artificial halos. So another basic 
assumption should be considered that an item reflects the jA’s boundary based on gradient 
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norm. And we deem that information in gradient domain of the reflectance jA and the given 
image iA has a high correlation. Hence, we modify the penalty function of Eq.(5) by replacing 
the third item with a new nonlinear diffusion one ( ) 2 2'- A At i iγ ∇ − ∇ to preserve the 
detail-and-edge information of jA. Combined with the correlation between jA and iA, the 
modified energy function is formulated as follows: 

 

( ) 22 2 2' ' ' '

' '

min ( - )

. . , 0

A A A

A

F t t t i t i i dxdy

s t t i and t n on

a γ
Ω

  = ∇ + − ∇ − ∇ 

≥ ∇ = ∂Ω

∫
d

              (6) 

 
In the intrinsical Retinex algorithm, Eq.(6) will be executed three times during every 

simulation of the RGB image processing. Therefore, three different t’ will be got as there are 
three different color channels. Here we first assume that the input of Eq.(6) is one and only, 
and we will present a way to estimate it in the next. 

3.2 The Sensitivity of Green Wavelength 
Human visual system (HVS) has specific response sensitivity to the small interval of light 
wave length. Fig. 1.(a) shows the segment of wavelength where the HSV has its maximum 
sensitivity. In figure one, the green curve represents the sensitivity for photonic vision, and the 
blue one for scotopic vision. Since we can see the much higher sensitivity to luminous 
efficiency of the scotopic vision compared to the photopic vision, both of them have maximum 
sensitivity from green-blue wavelength for red and blue perception, in which the combined 
overall sensitivity lies at about from 505nm to 555nm. Fig. 1.(b) shows the symmetric 
forward-scattered intensity from particle of aerosol in the incident light beam: the blue 
wavelength will tangentially be scattered more into 90° (270° respectively) direction relative 
to the incident light in the plane of observation, and the red wavelength will be scattered into 
forward (0°) in the plane of observation. With the angle increasing from 0° to 90°, the less 
intensity will be scattered. Meanwhile, the light wavelength ranges from red to blue. 
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(a)                                                                (b)  

Fig. 1. The sensitivity of green wavelength. (a) Photopic and scotopic response of the HVS [12], (b) 
Angular patterns of forward-scattered intensity from particle of aerosol [13] 

 
Due to the response of green wavelength and the intensity of forward-scattered, the green 

light component of image is assumed as the input of Eq.(6), which not only has satisfied 
efficiency (reduced the numbers of the estimation of transmission map from three to one) but 
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also corresponds with the statistical prior. We make all the three color channels of image 
(including: red, green, and blue light component) as the input of Eq.(6). Different haze 
removal results can be found in Fig. 2. 
 

 
               (a)                                    (b)                                    (c)                                    (d) 

Fig. 2. Haze removal results. Top: example images. Bottom: histogram of red, green, and blue light 
component of image. (a) Input hazy image. (b) Haze removal result with the input of red light 

component. (c) Haze removal result with the input of green light component. (d) Haze removal result 
with the input of blue light component 

 
As shown above, haze removal result with the input of green light component is more valid, 

and its histogram is more balanced than others (see Fig.2.(c)). 

3.3 The Multi-resolution Pyramid Reduction 
Finally, the energy functional Eq. (6) is solved via the Euler equation, which is given by: 

 
2( ) ( ) ( ( ) )

. . ( ) 0 &

' ' ' '
A A A

'

EL t t i t div i t i

s t EL t e s

a γ= − − ∆ + ∇ ∇ −

= ≥
                           (7) 

 
where the third item provides nonlinear diffusion process. Eq.(7) is the conductive coefficient 
or edge-stopping function and dependent on the image. The normal numerical process of Eq.(7) 
employs the Projected Normalized Steepest Descent (PNSD) with a NSD iteration format. It 
can get an ideal t’, but converges slowly. So, we apply the regularized P_M diffusion for 
pyramid construction. 

P_M diffusion is introduced with the second-order edge-stopping function, which tends to 
cause blocky effects and false edges [14]. Thus, more attention is put on the correlation of 
gradient information between iA and jA in our method. We deem that the edges and details of 
the jA derive from iA, replace the so-called anisotropic function by the norm of iA, which can not 
only preserve the edge information, but also eliminate the blocky effects caused by edge 
effects. Results show that the performance is in proximity to the fourth-order PDEs but with 
less complexity apparently. Therefore, our P_M diffusion function is defined: 
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' ' '[ | ( ) | ]Tt div g G t tσ= ∇ ⊗ ∇ ,                                                    (8) 

 
where Gσ is the Gaussian kernel with the variance of σ. We choose the second edge-stopping 
function: 

2' 21 (1 )g t k= + ∇ and other parameters are K=10，σ2=0.1. 

The numerical process of Eq.(7) can be solved as follows: (1) The initial condition is set to 
the maximum of the image. When updating the next resolution layer, the result is up scaled(2:1 
ratio) by pixel replication in the neighborhood. By the multi-resolution solution based on 
regularized P_M, we can obtain more edged and vivid images than precious pyramid 
construction. The results are shown in Fig. 3, from which we can see more edge and texture 
information in every layer of the regularized P_M. (2) For better visual effect, linear diffusion 
takes place only one time in every iteration to assume illumination, which is from the top-level 
to the bottom-level with high resolution. In our experiment, the total iteration time is set to 10. 
(3) Then we add the constraints in every iteration as: max(t’

j, t’’
j), where t’

j is the image after 
down-sampling, t’’

j is the image after iteration. 

Level 1

Level i

 
Fig. 3. Two pyramid constructions. Right: the Gaussian sampling. Left: our regularized P_M sampling. 

 
After we get the one and only t’, the latent scene radiance J(x, y) will be solved as follows: 

 

'

( , )( , )
10t

J x y AJ x y −
=                                                  (9) 

4. Experimental Results 
In order to validate the performance of our approach, two groups of experiments are 
established. Firstly, the difference between two variational frameworks is compared via 
testing synthetic images. The different performance is shown in Fig. 4. More sharp edges can 
be obtained using the nonlinear diffusion introduced in our algorithm than the Kimmel’s. 

Then, the proposed algorithm is compared with both DCP and Kimmel’s Retinex for 
natural images in Fig. 5 - Fig. 8. The results show that our algorithm could present more vivid 
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high-contrast restored image, and obtain more colorful results without color distortion. 
Especially, the proposed algorithm achieves wider dynamic range compression in the dark 
regions. Meanwhile, it takes the same time as Kimmel’s Retinex, which is approximately 
12.5% of DCP’s. Besides subjective evaluation, the typical objective evaluation values are in 
list in Table 1. Our results and comparison are generated on a PC with Intel Dual-Core E5300 
2.6GHz CPU with 2GB memory, Matlab 2013a. 

 
                        (a)                                             (b)                                              (c)  

Fig. 4. Synthetic images to test performance. Top: example synthetic images. Bottom: the 3D mesh of 
the synthetic images. (a) Original Image. (b) Kimmel’s Retinex (c) Our variational framework. 

 

 
                                            (a)                                                         (b) 

 
                                            (c)                                                         (d) 

Fig. 5. Natural images to test performance (Aerial image). (a) Input image. (b) DCP. (c) Kimmel’s 
Retinex. (d) Our algorithm. 
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                                               (a)                                                         (b) 

 
                                               (c)                                                         (d) 

Fig. 6. Natural images to test performance (Trees). (a) Input image. (b) DCP. (c) Kimmel’s Retinex. (d) 
Our algorithm. 

 
 

 
                                               (a)                                                         (b) 

 
                                               (c)                                                         (d) 

Fig. 7. Natural images to test performance (City) [15]. (a) Input image. (b) DCP. (c) Kimmel’s Retinex. 
(d) Our algorithm. 
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                                               (a)                                                         (b) 
 

 
                                               (c)                                                         (d) 
 

Fig. 8. Natural images to test performance (Peak). (a) Input image. (b) DCP. (c) Kimmel’s Retinex. (d) 
Our algorithm. 

 
 

According to Table 1, The “Mean” stands for the mean luminance of the image. The 
“Variance” stands for the contrast of the image. The “PDCP” is the proportion of the number 
of pixels, whose luminance is lower than 25 in our DCP image. A closer value of mean to 125 
indicates a better performance; meanwhile with the increase of the variance and PDCP, we 
will have a better result of image dehazing. With common standards for global and local 
contrast, the proposed algorithm gives the better results than others’. The experiments witness 
that subjective evaluation is consistent with the objective. 
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Table 1. Objective evaluations. 

(a) 
Fig.5 Input image DCP Kimmel’s Retinex our algorithm 
Mean 104.5125 49.0465 127.3879 67.6985 

Variance 54.2409 49.2509 73.6477 59.5288 
PDCP(%) 25.6456 92.5423 48.5280 99.4697 
Time(s) N/A 25.14 3.02 3.35 

(b) 
Fig.6 Input image DCP Kimmel’s Retinex our algorithm 
Mean 137.8323 69.0130 127.4979 71.1653 

Variance 26.7259 35.3530 61.6927 70.2031 
PDCP(%) 11.9424 75.3345 53.2781 90.1042 
Time(s) N/A 30.69 3.52 3.91 

(c) 
Fig.8 Input image DCP Kimmel’s Retinex our algorithm 
Mean 102.6203 60.4917 90.7925 95.8539 

Variance 41.6839 57.7394 69.3847 61.4986 
PDCP(%) 29.1788 92.2588 50.6194 96.1839 
Time(s) N/A 21.41 3.16 2.51 

(d) 
Fig.7 Input image DCP Kimmel’s Retinex our algorithm 
Mean 126.3689 59.0491 112.5091 70.6157 

Variance 30.8260 37.9401 57.4107 63.1471 
PDCP(%) 10.6393 85.1375 61.4839 81.9461 
Time(s) N/A 52.26 6.47 7.12 

5. Conclusion 
In summary, we present a variational framework for signal image dehazing based on 
restoration, and mainly focus on the efficiency by adopting the regularized P_M for the 
multi-resolution pyramid construction. With the adaptive adjustment of the variational 
framework, experimental results give the better visible restored images with wider dynamic 
range and vivid color. The impact on the proposed approach by the issue of noise would be 
considered in our future work. 
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