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ABSTRACT This paper presents a geostatistical methodology to model local uncertainty in spatial estimation of
sediment grain size with high-resolution remote sensing imagery. Within a multi-Gaussian framework, the IKONOS
imagery is used as local means both to estimate the grain size values and to model local uncertainty at unsample
locations. A conditional cumulative distribution function (ccdf) at any locations 1s defined by mean and variance values
which can be estimated by multi-Gaussian kriging with local means. Two ccdf statistics including condition variance
and interquartile range are used here as measures of local uncertainty and are compared through a cross validation
analysis. In addition to local uncertainty measures, the probabilities of not exceeding or exceeding any grain size value
at any locations are retrieved and mapped from the local ccdf models. A case study of Baramarae beach, Korea is

carried out to illustrate the potential of geostatistical uncertainty modeling.
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1. INTRODUCTION

Traditionally, environmental thematic mapping such as
grain size distribution and sedimentary facies maps are
based on field observation. Since field survey are limited
by the cost of sampling and the short exposure time
above water of tidal flats, sparse observation data are
generally available. Thematic mapping or further analysis
requires exhaustive attribute values for the entire study
area. Thus interpolation procedures are commonly
adopted in order to obtain attribute values at unsampled
locations. Among various interpolation algorithms,
geostatistical kriging can account for spatial variability in
the interpolation procedure. If any secondary information
can be obtained that has a reasonable correlation with the
primary attribute of interest and is exhaustively sampled,
the estimation error can be reduced when compared with
the case using only sparsely sampled data (Goovaerts,
2000).

If remote sensing imagery is considered as an
information source that provides exhaustive information
over the area of interest, it can be incorporated directly

into geostatistical kriging for spatial estimation. Park et al.

(2006) applied practical multivariate geostatisical
algorithms to spatial estimation of sediment grain size by
integrating high-resolution IKONOS imagery with
sparsely sampled grain size data. The case study results
indicate that accounting for the IKONOS imagery via
simple kriging with local means could reflect detailed
surface characteristics with less smoothing effects. Cross
validation results also showed that the multivariate
geostatistical algorithms produced the better prediction

capabilities than traditional univariate geostatistical
kriging algorithms.

Although the secondary information can be a useful
information source for the geostatistical mapping
procedure, however, the uncertainty attached to the
estimation should be assessed for further decision-
making or analysis.

This paper describes the potential of geostatisical
kriging for uncertainty modeling in spatial mapping of
sediment grain size with high-resolution remote sensing
imagery. In this study, local uncertainty is modelled by a
multi-Gaussian model as the parametric approach and
then the uncertainty regarding grain size distribution i1s
interpreted. Multi-Gaussian kriging with varying local
means is adopted both to model the uncertainty about
grain size for all pixels and to integrate high-resolution
remote sensing imagery. We 1llustrate the presented
schemes by undertaking a case study of Baramarae beach,
Korea

2. STUDY AREA AND DATA

The present study was conducted at Baramare beach,
located in the south of Anmyeondo, Korea. In the study
area, sea stacks including the Halmi and Seomot isles
with wave-cut platform and sand dune now block the
swell and a large tidal flat has developed (Jang et al.,
2003).

High-resolution IKONOS imagery acquired on
February 26, 2001 was used as the exhaustive
information source for grain size mapping. In
consideration of the season and tide condition at the time
of the IKONOS imagery acquisition, we conducted a
field survey on February 26, 2002. We collected
sediment sampled at 53 points. Sample fractions were
obtained at the laboratory using a set of sieves arranged

-225 -



with a half-phi interval and the mean grain sizes were
obtained in phi units.

3. GEOTATISTICAL METHODOLOGY
3.1 Multi-Gaussian Kriging

When considering the local uncertainty assessment for
spatial estimation 1n geostatistics, it is usually modelled
by the conditional cumulative distribution function (ccdf)
(Goovaerts, 1997). In this study, a multi-Gaussian model
is adopted to model ccdfs.

Our final goals for this geostatistical analysis are to
estimate the grain size value z(u) and to model the ccdf

at an unsampled location u using the grain size values at
n sample locations {z(u, ), a=l,--,»n }. In order to apply

multi-Gaussian kriging, an intrinsic assumption is that the
grain size values follow a standard Gaussian distribution.
To satisfy this assumption, a normal score transform is
generally applied to the original data values (Deutsch and
Journel, 1998). Once a new transformed variable

y(u,) has been obtained, the normal score value

Y¢r (W) at any location u is the simple kriging estimate as

linear combination of the surrounding normal score
transformed grain size data at sample location u , .

Under the multi-Gaussian framework, the mean and
variance, which are two parameters of the ccdf
F(u;y|(info)) at any location w, correspond to simple

kriging estimate yg (u) and variance cfg( (u) at wu,

respectively, and then the ccdf model is defined as
(Goovaerts, 1997):

F(u;y | (info)) = G[(y - ygx (W) o g ()] (1)
where (info) and G are the nearby sampled data and the
standard Gaussian cumulative distribution function,
respectively.

Once the ccdf modeling has been done in the Gaussian
space, the back-transform of the results 1s carried out to
obtain values in the original space. By following Saito

and Goovaerts (200), the kriging estimation zLG (u) is
empirically obtained as the E-type estimaton of the z ccdf.

3.2 Integration of IKONOS Imagery

In this study, IKONOS imagery was incorporated into
multi-Gaussian kriging to derive the local means or trend
of the normal score transformed grain size values.
Among various multivariate kriging algorithms for the
integration of exhaustively sampled secondary
information, Simple kriging with local means (SKlm)
was adopted that can incorporate several secondary
information sources by a linear or nonlinear calibration
procedure.

In the Gaussian space, the SKlm estimate of the

normal score value y, (u), which is also a mean value
of the y ccdf, is defined as:

n(u) :
Vaxm W = D A ) —m (w) +m (u,) @
a=1

Because the SKIm approach is the kriging of residuals,
the residual values at any location u are first estimated in
SKlm using neighboring residual values at sample

location u, and then they are added to the local means

m; (u) . The sum of the SKlm variance and the square of

standard error of the local mean estimate is used as the
variance of the y ccdf.

In this study, the local means were estimated by
applying a generalized additive model (GAM). The GAM
extends a generalized linear model by nonlinear and
smoothing operations (Hastie and Tibshirani, 1990).

4. RESULTS
4.1 Derivation of Local Means

Prior to geostatistical analysis, we first examimed how
strong each spectral band of IKONOS imagery was
correlated with grain size at the sample locations. The
normal score transformed values show a reasonable
linear correlation relationship with the IKONOS imagery.
The highest correlation was observed in the green band
with a value of -0.859. Next was the red band with -0.849.

Based on this correlation, local means were derived
from IKONOS imagery using GAM. Cubic B-spline
functions were used as nonparametric smoothing
operators. The use of all spectral bands showed the
smallest residual deviance among various band
combinations, and thus local means derived from all the
bands were finally used.

4.2 Variogram Analysis Results

To examine the spatial variability of gramn size
distribution, we computed the variogram map and
experimental variograms of normal score transformed
grain size values.

From the variogram map (not shown here), a strong
anisotropy was observed, orientated NW-SE (i.e., 135°
counter-clockwise from the EW direction). The reason
why reflectance values in the NW-SE direction are more
uniform than that in the NE-SW direction may be
explained by topography in the study area. Halmi and
Seomot isles lie linearly NW-SE at the southern end of
the Baramarae Beach and inhibit tidal currents and ocean
swell entering from the open sea. As a result, tides may
not flow in from the NE-SW direction but from the NW-
SE direction. Furthermore, an analysis of wind ripples in
the study area reveals that the seasonal northwest
monsoon causes fine-grained sediment to move NW-SE.

Based on the anisotropy, we computed experimental
variograms in the major NW-SE direction and the
perpendicular NE-SW trend with an angular tolerance of
22.5° and then fitted them using the geometric anisotropy
model. The variogram of the residual values of normal
score transforms were spatially correlated because of
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their bounded spatial patterns with very low nugget
effects.

4.3 Geostatistical Mapping Results

Spatial estimation results of kriging variants are
presented in Figure 1. A strong NW-SE continuity was
observed in the univariate multi-Gaussian kriging result.
This resulted from the geometric anisotropy variogram
model with a strong anisotropy in the major NW-SE
direction. The smoothing patterns that are typical
characteristics of kriging were also observed. The sand
spit and beach in front of Halmi isle were clearly
presented in the result.

In the kriging result with IKONOS imagery, the local
spatial grain size patterns were reflected well with less
smoothing effects. This indicates that IKONOS imagery
significantly influenced the kriging results and allows a
better interpretation of the local details of grain size.

To investigate which kriging algorithm generated the
most accurate estimates of grain size, a cross validation
based on the leave-one-out approach was carried out and
the estimation capabilities were quantitatively evaluated.
As expected, the incorporation of IKONOS imagery
leads to smaller prediction errors. The mean square error
values of multi-Gaussian kriging and SKim with GAM
were 0.231 and 0.093, respectively.

When compared with univariate kriging (i.e., multi-
Gaussian kriging), improvements of about 60% were
observed in SKim with GAM estimates. These
quantitative evaluation results confirm that accounting
for secondary information that is well correlated with
primary attributes can contribute to the improvement of
prediction capability at unsampled locations.
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Figure 1. Grain size distributions generated by multi-Gaussian
kriging (top) and SKIm with GAM (bottom).

4.4 Local Uncertainty Analysis Results

The uncertainty attached to the grain size estimation
can be easily assessed since the ccdf model at any
location 1s already fully known from kriging analysis.
Two cecdf statistics including conditional variance and
interquartile range are used here as measures of local
uncertainty (Goovaerts, 1997) and are compared with
square errors of the cross validation analysis in Table 1.
If the spread measures of conditional probability density
function are larger, the uncertainty attached to prediction
is greater.

Mean and standard deviation values of two local
uncertainty measures for SKlm with GAM  were
significantly smaller than those of multi-Gaussian kriging.
A very strong correlation between square error and local
uncertainty was not observed due to very low square
error values of SKIm with GAM. However, stronger
correlation with the square error could be observed for
SKlm with GAM, which matches well with our intuition
that the larger the uncertainty value 1s, the larger the
prediction error will be.

Table 1. Summary statistics for local uncertainty measures

» Multi- 1 o1 with
Statistics Gaussian
. GAM
kriging
Standard dev. of MSE 0.308 0.119
Mean 0.195 0.141
Standard dev. 0.128 0.085
Cond@mnal Correlation with 0.420 0.450
variance squared errors
Rank correlation 0.380 0.546
with squared errors
Mean 0.549 0.483
Standard dev. 0.306 0.265
Interquartile Correlation with 0.339 0.458
range squared errors
Rank correlation 0.420 0.552
with squared errors

In addition to local uncertainty measures based on
cross validation, the probabilities of not exceeding or
exceeding any grain size value at any location were
retrieved from the local ccdf models. By following
Wentworth classification criteria, the thresholding value
of 4 phi (0.0625 mm) between sand and silt classes was
selected. If the grain size in phi units is smaller than 4 phi
and larger than —1 phi, the grain is classified as being in
the sand category. The probability of belonging to the
sand class was computed directly from the normal score
transform of the target threshold value of 4 phi and the
mean and variance values of the y ccdf. Conversely, the
probability of belonging to the sit class 1s easily
retrieved by subtracting the probability of belonging to
the sand class from one.

The probability of belonging to the sand class for
kriging algorithms applied in this study 1s shown in
Figure 2. By observing the areas that have more than
80% probability of belonging to sand in multi-Gaussian
kriging, it seems likely that it was relatively
overevaluated compared to the field data. Although 1t is
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possible to analyze the regular direction of sand in
existing N-S directions in multi-Gaussian kriging because
there is a high probability of sand occurring in the entire
tidal flat excluding the bay-mouse area, the results show
a considerable difference from the actual field
observations. On the other hand, SKIm with GAM shows
very similar results to the field observations in regions
that have more than 80% probability of belong to sand. In
other words, SKIm with GAM reflects the field data more
accurately than multi-Gaussian kriging in the expression
of patterns and detail. In particular, the probability of
belonging to sand in the bay-mouse areas and tidal
channels is shown to be relatively high, which was not
found in the result by multi-Gaussian kriging.
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Figure 2. Probability of belonging to the sand class for kriging
algorithms applied in this study.

5. CONCLUSIONS

This paper has demonstrated the geostatistical anaylsis
procedures for spatial estimation and local uncertainty
modeling with high-resolution remote sensing imagery.
Especially, the main focus was on how multivariate
geostatistical kriging (in this study, SKlm within a multi-
Gaussian framework) can be used to map not only
detailed surface distribution of sediment grain size but
also the uncertainty attached to the estimation.

Experimental results from a case study of Baramarae
beach, Korea showed that accounting for high-resolution
IKONOS imagery via SKlm with GAM, despite its poor
spectral resolution, greatly improved the prediction
accuracy and reflected the detailed local variation of
grain size distribution in the study area, as compared with
traditional univarite multi-Gaussian kriging. When the
result of spatial estimation is used as input for any
environmental models, uncertainty or error propagation is

one of critical issues. Especially, as the result of local
uncertainty modeling, the spatial mapping of probability
of belonging to certain class can be used preliminary
information to evaluate the reliability of spatial
estimation results or to analyze the effects of uncertainty
propagation.

From a methodological point of view, the uncertainty
model adopted in this paper is a parametric multi-
Gaussian model. As for other uncertainty model, a
nonparametric approach such as indicator kriging can be
applied. Since what type of uncertainty model 1s adopted
is important, comparative study should be undertaken. In
addition to local uncertainty modeling, the uncertainty
about any attribute values to be assessed at many
locations simultaneously, namely spatial uncertainty,
should be evaluated by stochastic simulation for a certain
application purpose.
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