• 제목/요약/키워드: Multi-Junction

검색결과 129건 처리시간 0.028초

비소 고상확산방법을 이용한 MOSFET SOI FinFET 소자 제작 (Fabrication of SOI FinFET devices using Aresnic solid-phase-diffusion)

  • 조원주;구현모;이우현;구상모;정홍배
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2006년도 추계학술대회 논문집 Vol.19
    • /
    • pp.133-134
    • /
    • 2006
  • A simple doping method to fabricate a very thin channel body of the n-type fin field-effect-transistor (FinFET) with a 20 nm gate length by solid-phase-diffusion (SPD) process is presented. Using As-doped spin-on-glass as a diffusion source of arsenic and the rapid thermal annealing, the n-type source-drain extensions with a three-dimensional structure of the FinFET devices were doped. The junction properties of arsenic doped regions were investigated by using the $n^+$-p junction diodes which showed excellent electrical characteristics. Single channel and multi-channel n-type FinFET devices with a gate length of 20-100 nm was fabricated by As-SPD and revealed superior device scalability.

  • PDF

Advanced Circuit-Level Model of Magnetic Tunnel Junction-based Spin-Torque Oscillator with Perpendicular Anisotropy Field

  • Kim, Miryeon;Lim, Hyein;Ahn, Sora;Lee, Seungjun;Shin, Hyungsoon
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제13권6호
    • /
    • pp.556-561
    • /
    • 2013
  • Interest in spin-torque oscillators (STOs) has been increasing due to their potential use in communication devices. In particular the magnetic tunnel junction-based STO (MTJ-STO) with high perpendicular anisotropy is gaining attention since it can generate high output power. In this paper, a circuit-level model for an in-plane magnetized MTJ-STO with partial perpendicular anisotropy is proposed. The model includes the perpendicular torque and the shift field for more accurate modeling. The bias voltage dependence of perpendicular torque is represented as quadratic. The model is written in Verilog-A, and simulated using HSPICE simulator with a current-mirror circuit and a multi-stage wideband amplifier. The simulation results show the proposed model can accurately replicate the experimental data such that the power increases and the frequency decreases as the value of the perpendicular anisotropy gets close to the value of the demagnetizing field.

Present Status and Prospects of Thin Film Silicon Solar Cells

  • Iftiquar, Sk Md;Park, Jinjoo;Shin, Jonghoon;Jung, Junhee;Bong, Sungjae;Dao, Vinh Ai;Yi, Junsin
    • Current Photovoltaic Research
    • /
    • 제2권2호
    • /
    • pp.41-47
    • /
    • 2014
  • Extensive investigation on silicon based thin film reveals a wide range of film characteristics, from low optical gap to high optical gap, from amorphous to micro-crystalline silicon etc. Fabrication of single junction, tandem and triple junction solar cell with suitable materials, indicate that fabrication of solar cell of a relatively moderate efficiency is possible with a better light induced stability. Due to these investigations, various competing materials like wide band gap silicon carbide and silicon oxide, low band gap micro-crystalline silicon and silicon germanium etc were also prepared and applied to the solar cells. Such a multi-junction solar cell can be a technologically promising photo-voltaic device, as the external quantum efficiency of such a cell covers a wider spectral range.

Current Status of Thin Film Silicon Solar Cells for High Efficiency

  • Shin, Chonghoon;Lee, Youn-Jung;Park, Jinjoo;Kim, Sunbo;Park, Hyeongsik;Kim, Sangho;Jung, Junhee;Yi, Junsin
    • Current Photovoltaic Research
    • /
    • 제5권4호
    • /
    • pp.113-121
    • /
    • 2017
  • The researches on the silicon-based thin films are being actively carried out. The silicon-based thin films can be made as amorphous, microcrystalline and mixed phase and it is known that the optical bandgap can be controlled accordingly. They are suitable materials for the fabrication of single junction, tandem and triple junction solar cells. It can be used as a doping layer through the bonding of boron and phosphorus. The carbon and oxygen can bond with silicon to form a wide range of optical gap. Also, The optical gap of hydrogenated amorphous silicon germanium can be lower than that of silicon. By controlling the optical gaps, it is possible to fabricate multi-junction thin film silicon solar cells with high efficiencies which can be promising photovoltaic devices.

초전도 다층박막의 특성 해석 (Characterization of Superconducting Multi-layer Thin Films)

  • 이현수;한태희;임성훈;고석철;두호익;한병성
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2000년도 하계학술대회 논문집
    • /
    • pp.243-246
    • /
    • 2000
  • The sputtering systems mainly consist of the three-target holder. The target and substrate were the on-axis type. The MgO and STO substrate were used for the deposition of each layer. The optimum conditions of single-layer thin film were investigated from the SEM images and the XRD patterns. Based on the above conditions, the multi-layer thin films such as YBaCuO/LaGaO/Au/Nb and YBaCuO/Au/Nb were fabricated. The crystalline, the electrical Properties, the energy gap structure and the characteristics of the tunneling barrier on the multi-layer thin film have been investigated and characterized.

  • PDF

Lateral p-n junction Diode with organic single crystal by direct printing

  • Park, Yoon kyoung;Sung, Myung Mo
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.144.1-144.1
    • /
    • 2016
  • We fabricate organic single crystal nanowire heterojunction p-n diode poly(3-hexylthiophene)(P3HT) and from Phenyl-C61-butyric acid methyl ester(PCBM) using by liquid-bridge mediated nanotransfer molding(LB-nTM) method. LB-nTM has been reported an one step direct printing method for making well-aligned nanowire arrays. Moreover, multi-patterning nanostructures can be fabricated with the consecutive printing process. As a result, it is possible to make simple and basic concept of heterojunction devices such as lateral organic p-n nanojunction diode. P3HT/PCBM nanowires heterojunction diode has rectifying behavior with on/off ratios of ~20.

  • PDF

Negative Differential Resistance Devices with Ultra-High Peak-to-Valley Current Ratio and Its Multiple Switching Characteristics

  • Shin, Sunhae;Kang, In Man;Kim, Kyung Rok
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제13권6호
    • /
    • pp.546-550
    • /
    • 2013
  • We propose a novel negative differential resistance (NDR) device with ultra-high peak-to-valley current ratio (PVCR) by combining pn junction diode with depletion mode nanowire (NW) transistor, which suppress the valley current with transistor off-leakage level. Band-to-band tunneling (BTBT) Esaki diode with degenerately doped pn junction can provide multiple switching behavior having multi-peak and valley currents. These multiple NDR characteristics can be controlled by doping concentration of tunnel diode and threshold voltage of NW transistor. By designing our NDR device, PVCR can be over $10^4$ at low operation voltage of 0.5 V in a single peak and valley current.

Psychometric Analysis of a Persian Version of the European Organization for Research and Treatment of Cancer OG25 Quality of Life Questionnaire in Oesophagogastric Cancer Patients

  • Hesari, Ali Esmaeili;Lari, Mohsen Asadi;Shandiz, Fatemeh Homai
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권6호
    • /
    • pp.2739-2745
    • /
    • 2014
  • Background: Health-related quality of life (HRQL) is a fundamental outcome in oncology patients and quality of life (QOL) assessment requires clinically relevant questionnaires. The purpose of this study was translation and definition of measurement properties and the clinical validity of Quality of Life Questionnaire (QLQ)-OG25 module in Persian patients with oesophagus, oesophagogastric junction (OGJ) or gastric cancers. Materials and Methods: The translation procedure followed European Organization for Research and Treatment of Cancer (EORTC) guidelines. Both EORTC QLQ-OG25 and a core questionnaire (EORTC QLQ-C30) were administered to patients with oesophagus (150), OG junction (93) and gastric (32) cancer undergoing multi-modal treatments. Convergent and discriminant validity, Cronbach's alpha coefficient and known-groups comparisons were used to examine reliability and validity. Results: In all, 275 patients (mean age 62 years) completed both questionnaires. Compliance rate was high and the questionnaire module was well accepted. We found good reliability for multi-item subscales of QLQ-OG25 (Cronbach's alpha coefficients 0.76-0.89). About 73% had TNM staging and scales distinguished between clinically distinct groups of patients. However, patients in palliative group experienced compromised functional status and worse treatment-associated symptoms than those in the potentially curative group. Test-retest scores were consistent. Multi-trait scaling analysis demonstrated good convergent and discriminant validity. Conclusions: Overall, the Persian version of QLQ-OG25 demonstrated psychometric and clinical validity that supports its application as a supplement to the original tool (EORTC QLQ-C30) when assessing HRQL in patients with upper-gastrointestinal (GI) cancer both in curative and palliative phases.

박막태양전지의 광포획 기술 현황 (Current Status in Light Trapping Technique for Thin Film Silicon Solar Cells)

  • 박형식;신명훈;안시현;김선보;봉성재;;;이준신
    • Current Photovoltaic Research
    • /
    • 제2권3호
    • /
    • pp.95-102
    • /
    • 2014
  • Light trapping techniques can change the propagation direction of incident light and keep the light longer in the absorption layers of solar cells to enhance the power conversion efficiency. In thin film silicon (Si) solar cells, the thickness of absorption layer is generally not enough to absorb entire available photons because of short carrier life time, and light induced degradation effect, which can be compensated by the light trapping techniques. These techniques have been adopted as textured transparent conduction oxide (TCO) layers randomly or periodically textured, intermediate reflection layers of tandem and triple junction, and glass substrates etched by various patterning methods. We reviewed the light trapping techniques for thin film Si solar cells and mainly focused on the commercially available techniques applicable to textured TCO on patterned glass substrates. We described the characterization methods representing the light trapping effects, texturing of TCO and showed the results of multi-scale textured TCO on etched glass substrates. These methods can be used tandem and triple thin film Si solar cells to enhance photo-current and power conversion efficiency of long term stability.

SONOS 구조를 갖는 멀티 비트 소자의 프로그래밍 특성 (Programming Characteristics of the multi-bit devices based on SONOS structure)

  • 안호명;김주연;서광열
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2003년도 하계학술대회 논문집 Vol.4 No.1
    • /
    • pp.80-83
    • /
    • 2003
  • In this paper, the programming characteristics of the multi-bit devices based on SONOS structure are investigated. Our devices have been fabricated by $0.35\;{\mu}m$ complementary metal-oxide-semiconductor (CMOS) process with LOCOS isolation. In order to achieve the two-bits per cell operation, charges must be locally trapped in the nitride layer above the channel near the junction. Channel hot electron (CHE) injection for programming can operate in multi-bit using localized trap in nitride film. CHE injection in our devices is achieved with the single power supply of 5 V. To demonstrate CHE injection, substrate current (Isub) and one-shot programming curve were investigated. The multi-bit operation which stores two-bit per cell is investigated with a reverse read scheme. Also, hot hole injection for fast erasing is used. Due to the ultra-thin gate dielectrics, our results show many advantages which are simpler process, better scalability and lower programming voltage compared to any other two-bit storage flash memory. This fabricated structure and programming characteristics are shown to be the most promising for the multi-bit flash memory.

  • PDF