• Title/Summary/Keyword: Multi-Fuzzy

Search Result 753, Processing Time 0.026 seconds

Optimized Multi-Output Fuzzy Neural Networks Based on Interval Type-2 Fuzzy Set for Pattern Recognition (패턴 인식을 위한 Interval Type-2 퍼지 집합 기반의 최적 다중출력 퍼지 뉴럴 네트워크)

  • Park, Keon-Jun;Oh, Sung-Kwun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.5
    • /
    • pp.705-711
    • /
    • 2013
  • In this paper, we introduce an design of multi-output fuzzy neural networks based on Interval Type-2 fuzzy set. The proposed Interval Type-2 fuzzy set-based fuzzy neural networks with multi-output (IT2FS-based FNNm) comprise the network structure generated by dividing the input space individually. The premise part of the fuzzy rules of the network reflects the individuality of the division space for the entire input space and the consequent part of the fuzzy rules expresses three types of polynomial functions with interval sets such as constant, linear, and modified quadratic inference for pattern recognition. The learning of fuzzy neural networks is realized by adjusting connections of the neurons in the consequent part of the fuzzy rules, and it follows a back-propagation algorithm. In addition, in order to optimize the network, the parameters of the network such as apexes of membership functions, uncertainty factor, learning rate and momentum coefficient were automatically optimized by using real-coded genetic algorithm. The proposed model is evaluated with the use of numerical experimentation.

MULTI-DIMENSIONAL LIU PROCESS, INTEGRAL AND DIFFERENTIAL

  • You, Cuilian;Huo, Huae;Wang, Weiqing
    • East Asian mathematical journal
    • /
    • v.29 no.1
    • /
    • pp.13-22
    • /
    • 2013
  • As a fuzzy counterpart of stochastic calculus, fuzzy calculus including Liu integral and Liu formula were introduced. In order to deal with the problems with several fuzzy dynamic factors, Liu process, Liu integral and Liu formula are extended to the case of multi-dimensional in this paper.

Fuzzy logic control of a planar parallel manipulator using multi learning algorithm (다중 학습 알고리듬을 이용한 평면형 병렬 매니퓰레이터의 Fuzzy 논리 제어)

  • Song, Nak-Yun;Cho, Whang
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.5 no.8
    • /
    • pp.914-922
    • /
    • 1999
  • A study on the improvement of tracking performance of a 3 DOF planar parallel manipulator is performed. A class of adaptive tracking control sheme is designed using self tuning adaptive fuzzy logic control theory. This control sheme is composed of three classical PD controller and a multi learning type self tuning adaptive fuzzy logic controller set. PD controller is tuned roughly by manual setting a priori and fuzzy logic controller is tuned precisely by the gradient descent method for a global solution during run-time, so the proposed control scheme is tuned more rapidly and precisely than the single learning type self tuning adaptive fuzzy logic control sheme for a local solution. The control performance of the proposed algorithm is verified through experiments.

  • PDF

An Application of Fuzzy Logic with Desirability Functions to Multi-response Optimization in the Taguchi Method

  • Kim Seong-Jun
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.5 no.3
    • /
    • pp.183-188
    • /
    • 2005
  • Although it is widely used to find an optimum setting of manufacturing process parameters in a variety of engineering fields, the Taguchi method has a difficulty in dealing with multi-response situations in which several response variables should be considered at the same time. For example, electrode wear, surface roughness, and material removal rate are important process response variables in an electrical discharge machining (EDM) process. A simultaneous optimization should be accomplished. Many researches from various disciplines have been conducted for such multi-response optimizations. One of them is a fuzzy logic approach presented by Lin et al. [1]. They showed that two response characteristics are converted into a single performance index based upon fuzzy logic. However, it is pointed out that information regarding relative importance of response variables is not considered in that method. In order to overcome this problem, a desirability function can be adopted, which frequently appears in the statistical literature. In this paper, we propose a novel approach for the multi-response optimization by incorporating fuzzy logic into desirability function. The present method is illustrated by an EDM data of Lin and Lin [2].

Invariant Range Image Multi-Pose Face Recognition Using Fuzzy c-Means

  • Phokharatkul, Pisit;Pansang, Seri
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1244-1248
    • /
    • 2005
  • In this paper, we propose fuzzy c-means (FCM) to solve recognition errors in invariant range image, multi-pose face recognition. Scale, center and pose error problems were solved using geometric transformation. Range image face data was digitized into range image data by using the laser range finder that does not depend on the ambient light source. Then, the digitized range image face data is used as a model to generate multi-pose data. Each pose data size was reduced by linear reduction into the database. The reduced range image face data was transformed to the gradient face model for facial feature image extraction and also for matching using the fuzzy membership adjusted by fuzzy c-means. The proposed method was tested using facial range images from 40 people with normal facial expressions. The output of the detection and recognition system has to be accurate to about 93 percent. Simultaneously, the system must be robust enough to overcome typical image-acquisition problems such as noise, vertical rotated face and range resolution.

  • PDF

Multi-person multi-attribute decision making problems based on interval-valued intuitionistic fuzzy information (구간치 직관적퍼지정보를 기초한 다인 다속성 의사결정문제)

  • Park, Jin-Han;Park, Yong-Beom;Park, Yeong-Il
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2008.04a
    • /
    • pp.29-32
    • /
    • 2008
  • Based on the interval-valued intuitionistic fuzzy hybrid geometric (IIFHG) operator and the interval-valued intuitionistic fuzzy weighted geometric (IIFWG) operator, we investigate the group decision making problems in which all the information provided by the decision-makers is presented as interval-valued intuitionistic fuzzy decision matrices where each of the elements is characterized by interval-valued intuitionistic fuzzy numbers, and the information about attribute weights is partially known. A numerical example is used to illustrate the applicability of the proposed approach.

  • PDF

Fuzzy Defrost Control of the Multi-Type Heat Pump System (퍼지룰을 이용한 멀티형 히트펌프 시스템의 제상 제어)

  • 한도영;김경훈
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.8
    • /
    • pp.711-716
    • /
    • 2000
  • A fuzzy defrost control algorithm for the multi-type heat pump system was developed. In the fuzzy defrost control algorithm, the air temperature difference at the outdoor unit and the refrigerant pressure difference at the compressor were used as input variables, and the defrost starting time and the defrost time interval were used as output variables. This fuzzy algorithm was applied to the multi-type heat pump system and tested in the five dynamic environmental chambers. Test results show that the newly developed control algorithm is more effective than the conventional control algorithm in the removal of frost formed at the outdoor unit of the heat pump.

  • PDF

Multi-FNN Identification Based on HCM Clustering and Evolutionary Fuzzy Granulation

  • Park, Ho-Sung;Oh, Sung-Kwun
    • International Journal of Control, Automation, and Systems
    • /
    • v.1 no.2
    • /
    • pp.194-202
    • /
    • 2003
  • In this paper, we introduce a category of Multi-FNN (Fuzzy-Neural Networks) models, analyze the underlying architectures and propose a comprehensive identification framework. The proposed Multi-FNNs dwell on a concept of fuzzy rule-based FNNs based on HCM clustering and evolutionary fuzzy granulation, and exploit linear inference being treated as a generic inference mechanism. By this nature, this FNN model is geared toward capturing relationships between information granules known as fuzzy sets. The form of the information granules themselves (in particular their distribution and a type of membership function) becomes an important design feature of the FNN model contributing to its structural as well as parametric optimization. The identification environment uses clustering techniques (Hard C - Means, HCM) and exploits genetic optimization as a vehicle of global optimization. The global optimization is augmented by more refined gradient-based learning mechanisms such as standard back-propagation. The HCM algorithm, whose role is to carry out preprocessing of the process data for system modeling, is utilized to determine the structure of Multi-FNNs. The detailed parameters of the Multi-FNN (such as apexes of membership functions, learning rates and momentum coefficients) are adjusted using genetic algorithms. An aggregate performance index with a weighting factor is proposed in order to achieve a sound balance between approximation and generalization (predictive) abilities of the model. To evaluate the performance of the proposed model, two numeric data sets are experimented with. One is the numerical data coming from a description of a certain nonlinear function and the other is NOx emission process data from a gas turbine power plant.

Design of Optimized Multi-Fuzzy Controller for Air Conditioning System (에어컨 시스템에 대한 최적화된 Multi-Fuzzy 제어기 설계)

  • Jeong, Seung-Hyeon;Choe, Jeong-Nae;O, Seong-Gwon;Kim, Hyeon-Gi
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2006.11a
    • /
    • pp.374-377
    • /
    • 2006
  • 본 논문은 에어컨 시스템의 효율성과 안정성에 기초하여, 과열도와 저압을 제어하는 Fuzzy 제어기 설계를 제안한다. 에어컨 시스템은 Compressor(압축기), Condenser(응축기), Evaporator(증발기), Expansion Valve(확장 밸브) 로 구성되며, 각각의 기기에 대한 제어가 독립적으로 이루어져 있다. 기존의 제어가 한 제어기를 사용한 단일방식으로 이루어지다보니 에어컨 시스템의 특성인 냉매의 상태가 달라지면 시스템 전반적으로 그 영향이 파급되는 부분까지 고려를 해 주지 못하고, 제어기의 성능이 효율적이고 안정적이지 못했다. 본 논문에서는 에어컨 시스템의 효율과 안정도에 결정적인 영향을 미치는 과열도와 저압(증발기의 압력)을 제어하기 위해, 비선형성이 강하고 불확실하며 복잡한 시스템을 쉽게 제어할 수 있는 Fuzzy 제어기를 구성하여, Expansion Valve 와 Compressor 에서 동시에 제어하는 Multi 제어기를 설계한다. 제안된 Fuzzy 제어기는 이산형 lookup_table 방식과 연속형 간략추론 방식을 사용하여 제어기를 설계하고, 유전자 알고리즘(GAs)을 이용하여 최적의 Fuzzy 제어기의 환산계수를 구한다. 그리고 시뮬레이션 결과를 통해 이산형 lookup_table 방식과 연속형 간략추론 방식의 각각의 제어기를 사용한 결과를 비교한다.

  • PDF

Fuzzy multi-objective optimization of the laminated composite beam (복합재 적층 보의 퍼지 다목적 최적설계)

  • 이강희;구만회;이종호;홍영기;우호길
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2000.04a
    • /
    • pp.143-148
    • /
    • 2000
  • In this article, we presents multi-objective design optimization of laminated composite beam using Fuzzy programming method. At first, the two design objectives are minimizing the structural weight and maximizing the buckling load respectively. Fuzzy multi-optimization problem can be formulated based on results of single optimizations. Due to different relative importance of design objectives, membership functions are constructed by adding exponential parameters for different objective's weights. Finite element analysis of composite beam for buckling behavior are carried by Natural mode method proposed by J.Argyris and computational time of analysis can be reduced. With this scheme, a designer can conveniently obtain a compromise optimal solution of a multi-objective optimization problem only by providing some exponential parameters corresponding to the importance of the objective functions.

  • PDF