• Title/Summary/Keyword: Multi slice CT

Search Result 29, Processing Time 0.024 seconds

Research of z-axis geometric dose efficiency in multi-detector computed tomography (MDCT 장치의 z-축 기하학적 선량효율에 관한 연구)

  • Kim, You-Hyun;Kim, Moon-Chan
    • Journal of radiological science and technology
    • /
    • v.29 no.3
    • /
    • pp.167-175
    • /
    • 2006
  • With the recent prevalence of helical CT and multi-slice CT, which deliver higher radiation dose than conventional CT due to overbeaming effect in X-ray exposure and interpolation technique in image reconstruction. Although multi-detector and helical CT scanner provide a variety of opportunities for patient dose reduction, the potential risk for high radiation levels in CT examination can't be overemphasized in spite of acquiring more diagnostic information. So much more concerns is necessary about dose characteristics of CT scanner, especially dose efficient design as well as dose modulation software, because dose efficiency built into the scanner's design is probably the most important aspect of successful low dose clinical performance. This study was conducted to evaluate z-axis geometric dose efficiency in single detector CT and each level multi-detector CT, as well as to compare z-axis dose efficiency with change of technical scan parameters such as focal spot size of tube, beam collimation, detector combination, scan mode, pitch size, slice width and interval. The results obtained were as follows ; 1. SDCT was most highest and 4 MDCT was most lowest in z-axis geometric dose efficiency among SDCT, 4, 8, 16, 64 slice MDCT made by GE manufacture. 2. Small focal spot was 0.67-13.62% higher than large focal spot in z-axis geometric dose efficiency at MDCT. 3. Large beam collimation was 3.13-51.52% higher than small beam collimation in z-axis geometric dose efficiency at MDCT. 4. Z-axis geometric dose efficiency was same at 4 slice MDCT in all condition and 8 slice MDCT of large beam collimation with change of detector combination, but was changed irregularly at 8 slice MDCT of small beam collimation and 16 slice MDCT in all condition with change of detector combination. 5. There was no significant difference for z-axis geometric dose efficiency between conventional scan and helical scan, and with change of pitch factor, as well as change of slice width or interval for image reconstruction. As a conclusion, for reduction of patient radiation dose delivered from CT examination we are particularly concerned with dose efficiency of equipment and have to select proper scanning parameters which increase z-axis geometric dose efficiency within the range of preserving optimum clinical information in MDCT examination.

  • PDF

Influence of slice thickness of computed tomography and type of rapid protyping on the accuracy of 3-dimensional medical model (CT절편두께와 RP방식이 3차원 의학모델 정확도에 미치는 영향에 대한 연구)

  • Um Ki-Doo;Lee Byung-Do
    • Imaging Science in Dentistry
    • /
    • v.34 no.1
    • /
    • pp.13-18
    • /
    • 2004
  • Purpose : This study was to evaluate the influence of slice thickness of computed tomography (CT) and rapid protyping (RP) type on the accuracy of 3-dimensional medical model. Materials and Methods: Transaxial CT data of human dry skull were taken from multi-detector spiral CT. Slice thickness were 1, 2, 3 and 4 mm respectively. Three-dimensional image model reconstruction using 3-D visualization medical software (V-works /sup TM/ 3.0) and RP model fabrications were followed. 2-RP models were 3D printing (Z402, Z Corp., Burlington, USA) and Stereolithographic Apparatus model. Linear measurements of anatomical landmarks on dry skull, 3-D image model, and 2-RP models were done and compared according to slice thickness and RP model type. Results: There were relative error percentage in absolute value of 0.97, 1.98,3.83 between linear measurements of dry skull and image models of 1, 2, 3 mm slice thickness respectively. There was relative error percentage in absolute value of 0.79 between linear measurements of dry skull and SLA model. There was relative error difference in absolute value of 2.52 between linear measurements of dry skull and 3D printing model. Conclusion: These results indicated that 3-dimensional image model of thin slice thickness and stereolithographic RP model showed relative high accuracy.

  • PDF

Evaluation of the effective dose and image quality of low-dose multi-detector CT for orthodontic treatment planning (3차원 안모분석을 위한 저선량 Multi-detector CT 영상의 유효선량 및 화질 평가)

  • Chung, Gi-Chung;Han, Won-Jeong;Kim, Eun-Kyung
    • Imaging Science in Dentistry
    • /
    • v.40 no.1
    • /
    • pp.15-23
    • /
    • 2010
  • Purpose : This study was designed to compare the effective doses from low-dose and standard-dose multi-detector CT (MDCT) scanning protocols and evaluate the image quality and the spatial resolution of the low-dose MDCT protocols for clinical use. Materials and Methods : 6-channel MDCT scanner (Siemens Medical System, Forschheim, Germany), was used for this study. Protocol of the standard-dose MDCT for the orthodontic analysis was 130 kV, 35 mAs, 1.25 mm slice width, 0.8 pitch. Those of the low-dose MDCT for orthodontic analysis and orthodontic surgery were 110 kV, 30 mAs, 1.25 mm slice width, 0.85 pitch and 110 kV, 45 mAs, 2.5 mm slice width, 0.85 pitch. Thermoluminescent dosimeters (TLDs) were placed at 31 sites throughout the levels of adult female ART head and neck phantom. Effective doses were calculated according to ICRP 1990 and 2007 recommendations. A formalin-fixed cadaver and AAPM CT performance phantom were scanned for the evaluation of subjective image quality and spatial resolution. Results : Effective doses in ${\mu}Sv$ ($E_{2007}$) were 699.1, 429.4 and 603.1 for standard-dose CT of orthodontic treatment, low-dose CT of orthodontic analysis, and low-dose CT of orthodontic surgery, respectively. The image quality from the low-dose protocol were not worse than those from the standard-dose protocol. The spatial resolutions of both standard-dose and low-dose CT images were acceptable. Conclusion : From the above results, it can be concluded that the low-dose MDCT protocol is preferable in obtaining CT images for orthodontic analysis and orthodontic surgery.

Comparative study on alveolar bone height of pantomography and multi planar reformatted computed tomography (파노라마방사선사진과 다면상재구성 CT상의 치조골 높이 계측에 대한 비교 연구)

  • Ji Jung-Hyun;Lee Sang-Rae;Lee Byung-Do
    • Imaging Science in Dentistry
    • /
    • v.34 no.3
    • /
    • pp.159-164
    • /
    • 2004
  • Purpose: To compare alveolar bony height of pantomograph with bony height of thin slice, multiplanar reformatted (MPR) Computed Tomograph. Materials and Methods : Panoramic radiograms of 12 young adult patients had been taken by one radologic technitian and the measurements were corrected by magnification ratio (1.20). The slice thickness of Multi-detector Computed Tomography (CT) was at least 1mm for the accuracy. The raw CT datas were imported into the V-works 4.0 (CyberMed Corp., Seoul, Korea) and transformed to MPR images. Pantomographic measurements of alveolar bone were compared to CT values by average mean bony height measurements for the accuracy. Inter-, and Intra-observer variability was evaluated. Results : There was no significant differences between height measurement of pantomography and that of CT (P>0.05). There were no significant differences in either inter-or intra-observer measurements (P>0.05). Conclusion : Pantomography showed relatively high accuracy and precision in measuring alveolar bony height.

  • PDF

Comparison of dental radiography and computed tomography: measurement of dentoalveolar structures in healthy, small-sized dogs and cats

  • Lee, Seunghee;Lee, Kichang;Kim, Hyeona;An, Jeongsu;Han, Junho;Lee, Taekwon;Jeong, Hogyun;Cho, Youngkwon
    • Journal of Veterinary Science
    • /
    • v.21 no.5
    • /
    • pp.75.1-75.8
    • /
    • 2020
  • Background: Dental diseases are common in dogs and cats, and accurate measurements of dentoalveolar structure are important for planning of treatment. The information that the comparison computed tomography (CT) with dental radiography (DTR) is not yet reported in veterinary medicine. Objectives: The purpose of this study was to compare the DTR with CT of dentoalveolar structures in healthy dogs and cats, and to evaluate the CT images of 2 different slice thicknesses (0.5 and 1.0 mm). Methods: We included 6 dogs (2 Maltese and 1 Spitz, Beagle, Pomeranian, mixed, 1 to 8 years, 4 castrated males, and 2 spayed female) and 6 cats (6 domestic short hair, 8 months to 3 years, 4 castrated male, and 2 spayed female) in this study. We measured the pulp cavity to tooth width ratio (P/T ratio) and periodontal space of maxillary and mandibular canine teeth, maxillary fourth premolar, mandibular first molar, maxillary third premolar and mandibular fourth premolar. Results: P/T ratio and periodontal space in the overall dentition of both dogs and cats were smaller in DTR compared to CT. In addition, CT images at 1.0 mm slice thickness was generally measured to be greater than the images at 0.5 mm slice thickness. Conclusions: The results indicate that CT with thin slice thickness provides more accurate information on the dentoalveolar structures. Additional DTR, therefore, may not be required for evaluating dental structure in small-sized dogs and cats.

Combined PET/CT in Oncology (종양핵의학에서 PET/CT의 역할)

  • Kang, Keon-Wook
    • The Korean Journal of Nuclear Medicine
    • /
    • v.36 no.1
    • /
    • pp.80-86
    • /
    • 2002
  • Presently, PET is widely used in oncology, but suffers from limitations of poor anatomical information. To compensate for this weakness, a combined PET/CT has been developed by Professor Townsend at the University of Pittsburgh Medical Center. The prototype was designed as PET and CT components combined serially in a gantry. The CT images provide not only accurate anatomical location of the lesions but also transmission map for attenuation correction. More than 300 cancer patients have been studied with the prototype of PET/CT since July, 1998. The PET/CT studies affected the managements in about $20{\sim}30%$ of cancer patients. These changes are a consequence of the more accurate localization of functional abnormalities, and the distinction of pathological from normal physiological uptake. Now a variety of combined PET/CT scanners with high-end PET and high-end CT components are commercially available. With the high speed of multi-slice helical CT, throughput of patient's increases compared to conventional PET. Although some problems (such as a discrepancy in breathing state between the two modalities) still remain, the role of PET/CT in oncology is very promising.

Research on the Reduction of Exposure Dose of a Patient Having a PET/CT Exam (PET/CT 검사 환자의 피폭선량 경감을 위한 연구)

  • Kim, Bong-Su;Pyo, Sung-Jai;Cho, Yong-Gyi;Shin, Chai-Ho;Cho, Jin-Woo;Kim, Chang-Ho
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.13 no.3
    • /
    • pp.10-16
    • /
    • 2009
  • Purpose: As the number of patients has increased since the installation of a PET/CT, we are now examining about 2500-3000 annually. We have realized that if we properly adjust a pitch under the same condition of a CT during a PET/CT exam, radiation quantity that reaches the patient can change. In order to reduce the exposure dose of a patient, the research examines a method of reducing the exposure dose of a patient by controlling the pitch during a PET/CT exam, viewing whether the adjustment of the pitch influences CT image and PET SUV. Methods: The equipment used is a Biograph Positron Emission Tomography (PET) Scanner (CT type: TRCT-240-130 (WCT-240-130)) of Siemens company. For the evaluation of exposure dose of a patient, we measured radiation quantities using a PTW-DIADOS 11003/1383, which is a CT radiation measurement instrument used by Siemens. We measured and analyzed the space resolutions of CT images caused by the change of pitches using an AAPM Standard Phantom in order to see how the adjustment of pitches influenced the CT images. In addition, in order to obtain SUVs caused by each change of pitches using a PET source made with a solid radioactive cylinder phantom, we confirmed whether the SUVs changed in the PET/CT images by calculating the SUVs of the fusion images caused by the change of pitches after obtaining CT and PET images and finishing the test. Results: 2slice CT scanner showed that radiation quantities largely dropped when pitches ranged from 0.7 to 1.3 and that the reduction of radiation quantities were smaller when pitches ranged from 1.5 to 1.9. That is, we found that the bigger pitch values are the smaller the radiation quantities of a patient are. Moreover, we realized that there is no change of SUVs caused by the increase of pitches and that pitch values do not influence PET SUVs and the quality of CT images. It is judged that using 1.5 as a pitch value contributes to the reduction of exposure dose of a patient as long as there is no problem in the quality of an image. Conclusions: When seeing the result of the research, hospital using a PET/CT should make an effort to reduce the exposure dose of a patient seeking pitch values appropriate for their hospital within the range in which there is no image distortion and PET SUVs are not influenced from pitches. We think that the research can apply to all multi-detectors having a CT scanner and that such a research will be needed for other equipments in the future.

  • PDF

Quantitative Measurements of 3-D Imaging with Computed Tomography using Human Skull Phantom

  • Kim, Dong-Wook;Kim, Hee-Joung;Haijo Jung;Soonil Hong;Yoo, Young-Il;Kim, Dong-Hyeon;Kim, Kee-Deog
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2002.09a
    • /
    • pp.506-508
    • /
    • 2002
  • As an advancement of medical imaging modalities and analyzing software with multi-function, active researches to acquire high contrast and high resolution image being done. In recently, development of medical imaging modalities like as Computed Tomography (CT) and Magnetic Resonance Imaging (MRI) is aiming to display anatomical structure more accuracy and faster. Thus, one of the important areas in CT today is the use of CT scanner for the quantitative evaluation of 3-D reconstruction images from 2-D tomographic images. In CT system, the effective slice thickness and the quality of 3-D reconstructed image will be influenced by imaging acquisition parameters (e.g. pitch and scan mode). In diagnosis and surgical planning, the accurate distance measurements of 3-D anatomical structures play an important role and the accuracy of distance measurements will depend on the acquisition parameters such as slice thickness, pitch, and scan mode. The skull phantom was scanned with SDCT for various acquisition parameters and acquisition slice thicknesses were 3 and 5 mm, and reconstruction intervals were 1, 2, and 3 mm to each pitch. 3-D visualizations and distance measurements were performed with PC based 3-D rendering and analyzing software. Results showed that the image quality and the measurement accuracy of 3-D SDCT images are independent to the reconstruction intervals and pitches.

  • PDF

Three Dimensional Segmentation in PCNN

  • Nishi, Naoya;Tanaka, Masaru;Kurita, Takio
    • Proceedings of the IEEK Conference
    • /
    • 2002.07b
    • /
    • pp.802-805
    • /
    • 2002
  • In the three-dimensional domain image expressed with two-dimensional slice images, such as fMRI images and multi-slice CT images, we propose the three-dimensional domain automatic segmentation for the purpose of extracting region. In this paper, we segmented each domain from the fMRI images of the head of people and monkey. We used the neural network "Pulse-Coupled Neural Network" which is one of the models of visual cortex of the brain based on the knowledge from neurophysiology as the technique. By using this technique, we can segment the region without any learning. Then, we reported the result of division of each domain and extraction to the fMRI slice images of human's head using "three-dimensional Pulse-Coupled Neural Network" which is arranged and created the neuron in the shape of a three-dimensional lattice.

  • PDF