• Title/Summary/Keyword: Multi parameter

Search Result 1,156, Processing Time 0.024 seconds

Kinetic and multi-parameter isotherm studies of picric acid removal from aqueous solutions by carboxylated multi-walled carbon nanotubes in the presence and absence of ultrasound

  • Gholitabar, Soheila;Tahermansouri, Hasan
    • Carbon letters
    • /
    • v.22
    • /
    • pp.14-24
    • /
    • 2017
  • Carboxylated multi-wall carbon nanotubes (MWCNTs-COOH) have been used as efficient adsorbents for the removal of picric acid from aqueous solutions under stirring and ultrasound conditions. Batch experiments were conducted to study the influence of the different parameters such as pH, amount of adsorbents, contact time and concentration of picric acid on the adsorption process. The kinetic data were fitted with pseudo-first order, pseudo-second-order, Elovich and intra-particle diffusion models. The kinetic studies were well described by the pseudo-second-order kinetic model for both methods. In addition, the adsorption isotherms of picric acid from aqueous solutions on the MWCNTs were investigated using six two-parameter models (Langmuir, Freundlich, Tempkin, Halsey, Harkins-Jura, Fowler-Guggenheim), four three-parameter models (Redlich-Peterson, Khan, Radke-Prausnitz, and Toth), two four-parameter equations (Fritz-Schlunder and Baudu) and one five-parameter equation (Fritz-Schlunder). Three error analysis methods, correlation coefficient, chi-square test and average relative errors, were applied to determine the best fit isotherm. The error analysis showed that the models with more than two parameters better described the picric acid sorption data compared to the two-parameter models. In particular, the Baudu equation provided the best model for the picric acid sorption data for both methods.

Simulations of Frequency-dependent Impedance of Ground Rods Considering Multi-layered Soil Structures

  • Lee, Bok-Hee;Joe, Jeong-Hyeon;Choi, Jong-Hyuk
    • Journal of Electrical Engineering and Technology
    • /
    • v.4 no.4
    • /
    • pp.531-537
    • /
    • 2009
  • Lightning has a broad frequency spectrum from DC to a few MHz. Consequently, the high frequency performance of grounding systems for protection against lightning should be evaluated, with the distributed parameter circuit model in a uniform soil being used to simulate grounding impedances. This paper proposes a simulation method which applies the distributed parameter circuit model for the frequency-dependent impedance of vertically driven ground rods by considering multi-layered soil structures where ground rods are buried. The Matlab program was used to calculate the frequency-dependent ground impedances for two ground rods of different lengths. As a result, an increase of the length of ground rod is not always followed by a decrease of grounding impedance, at least at a high frequency. The results obtained using the newly proposed simulation method considering multi-layered soil structures are in good agreement with the measured results.

Multi-Time Scale Separations and Optimal Control Problems of Multi-Parameter Singular Perturbation Systems (여러 매개상수 특이접동계에서의 여러 시간스케일 분리와 최적제어 문제)

  • Kim, Sam-Soo;Hong, Jae-Keun;Kim, Soo-Joong
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.24 no.1
    • /
    • pp.20-27
    • /
    • 1987
  • The hierarchical approach method is proposed to sperate each different time scale sub-systems from linear time invariant multi-parameter singular perturbation systems. By means of this proposal, the original multi-parameter singular perturbation systems is completely separated into independent subsystems with each different time scale. It is also investigated that the controllability of the system is invariant. And this paper applies singular perturbation methods to the minimum control effort problem for linear time invariant systems with constrained controls. Also near-optimum control theory, which is based on dividing the total time interval with the time scales respectively, is proposed. As a result, the time scale separation method is show to be particularly useful in a near optimum design which can be otained through a decentralized control structure.

  • PDF

Nonlinear pH Control Using a Three Parameter Model

  • Lee, Jie-Tae;Park, Ho-Cheol
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.2 no.2
    • /
    • pp.130-135
    • /
    • 2000
  • A two parameter model of a single fictitious weak acid with unknown dissociation constant has been successfully applied to design a neutralization system for many multi-component acid streams. But there are some processes for which above two parameter model is not satisfactory due to poor approxmation of the nonlinearity of pH process. Here, for etter control of wide class of multi-component acid streams, a three parameter model of a strong acid and a weak acid with unknown dissociation constant is proposed. The model approximates effectively three types of largest gain variation nonlinearities. Based on this model a nonlinear pH control system is designed. Parameters can eeasily estimated since their combinations appear linearly in the model equations and nonlinear adaptive control system may also be constructed just as with the two parameter model.

  • PDF

Diffraction Corrections for Second Harmonic Beam Fields and Effects on the Nonlinearity Parameter Evaluation

  • Jeong, Hyunjo;Cho, Sungjong;Nam, Kiwoong;Lee, Janghyun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.36 no.2
    • /
    • pp.112-120
    • /
    • 2016
  • The nonlinearity parameter is frequently measured as a sensitive indicator in damaged material characterization or tissue harmonic imaging. Several previous studies have employed the plane wave solution, and ignored the effects of beam diffraction when measuring the non-linearity parameter ${\beta}$. This paper presents a multi-Gaussian beam approach to explicitly derive diffraction corrections for fundamental and second harmonics under quasilinear and paraxial approximation. Their effects on the nonlinearity parameter estimation demonstrate complicated dependence of ${\beta}$ on the transmitter-receiver geometries, frequency, and propagation distance. The diffraction effects on the non-linearity parameter estimation are important even in the nearfield region. Experiments are performed to show that improved ${\beta}$ values can be obtained by considering the diffraction effects.

Robust Multi-Hump Convolution Input Shaper for Variation of Parameter (파라메터 변화에 강인한 Multi-Hump Convolution 입력성형기 설계)

  • Park, Un-Hwan;Lee, Jae-Won
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.5
    • /
    • pp.112-119
    • /
    • 2001
  • A variety of input shaper has been proposed to reduce the residual vibration of flexible structures. Multi-hump input shaper is known to be robust for parameter variations. However, existing approach should solve the more complicated nonlinear simultaneous equations to improve the robustness of the input shaper with the additional constraints. In this paper, by proposing a graphical approach which uses convolution of shaper, the multi-hump convolution input shaper could be designed even if the constraints are added for further robustness. With a mass-damper-spring model, the better performance is obtained using the proposed new multi-hump convolution input shaper.

  • PDF

A Study on the Simulation of Monthly Discharge by Markov Model (Markov모형에 의한 월유출량의 모의발생에 관한 연구)

  • 이순혁;홍성표
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.31 no.4
    • /
    • pp.31-49
    • /
    • 1989
  • It is of the most urgent necessity to get hydrological time series of long duration for the establishment of rational design and operation criterion for the Agricultural hydraulic structures. This study was conducted to select best fitted frequency distribution for the monthly runoff and to simulate long series of generated flows by multi-season first order Markov model with comparison of statistical parameters which are derivated from observed and sy- nthetic flows in the five watersheds along Geum river basin. The results summarized through this study are as follows. 1. Both two parameter gamma and two parameter lognormal distribution were judged to be as good fitted distributions for monthly discharge by Kolmogorov-Smirnov method for goodness of fit test in all watersheds. 2. Statistical parameters were obtained from synthetic flows simulated by two parameter gamma distribution were closer to the results from observed flows than those of two para- meter lognormal distribution in all watersheds. 3. In general, fluctuation for the coefficient of variation based on two parameter gamma distribution was shown as more good agreement with the observed flow than that of two parameter lognormal distribution. Especially, coefficient of variation based on two parameter lognormal distribution was quite closer to that of observed flow during June and August in all years. 4. Monthly synthetic flows based on two parameter gamma distribution are considered to give more reasonably good results than those of two parameter lognormal distribution in the multi-season first order Markov model in all watersheds. 5. Synthetic monthly flows with 100 years for eack watershed were sjmulated by multi- season first order Markov model based on two parameter gamma distribution which is ack- nowledged to fit the actual distribution of monthly discharges of watersheds. Simulated sy- nthetic monthly flows may be considered to be contributed to the long series of discharges as an input data for the development of water resources. 6. It is to be desired that generation technique of synthetic flow in this study would be compared with other simulation techniques for the objective time series.

  • PDF

Calculation of the Peak-delay Force Reduction Parameter of Multi-Directional Random Waves Acting on a Long Caisson Breakwater (장대 케이슨 방파제에 작용하는 다방향 불규칙파랑의 파력감소계수 산정)

  • Jung, Jae-Sang;Kim, Bum-Hyung;Kim, Hyung-Jun;Cho, Yong-Sik
    • Journal of Korea Water Resources Association
    • /
    • v.43 no.10
    • /
    • pp.843-850
    • /
    • 2010
  • By employing multi-directional random waves, a parameter controlling the force acting on a long caisson breakwater is investigated in detail. Both JONSWAP (Joint North Sea Wave Project) and asymmetric directional spectra are adopted for frequency and directional spectra. It is found that the parameter decreases as the length of caisson and the angle of main direction of incident waves increase. Furthermore, the parameter is much similar to that of regular waves as the maximum spreading parameter $s_{max}$ increases. The parameter, however, decreases as asymmetry parameter ${\mu}$ increases when the main direction of incident waves is oblique to the breakwater.

Analysis of Posture Balance System of using Multi-parameter after Exercising (운동 후 멀티파라미터를 이용한 자세균형의 시스템 분석)

  • Kim, Jeong-Lae
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.11 no.5
    • /
    • pp.145-150
    • /
    • 2011
  • This study was developed the posture balance system of multi-parameter for moving body after and before exercising. Body transition meaned a head moving and upper body moving. This system has catched a signal for physical condition of body data such as a data acquisition system, data signal processing and feedback system. There were checked a parameter that measured vision, vestibular, somatosensory, CNS. This system was evaluated a data through the stability. The posture balance system can be used to support assessment for body moving in exercising situation. It was expected to monitor a physical parameter for health management system.

A Study on Development of High Flow Solenoid Valves (대유량 솔레노이드 밸브 개발에 관한 연구)

  • Jeong, C.S.;Yang, S.Y.
    • Journal of Drive and Control
    • /
    • v.10 no.1
    • /
    • pp.7-13
    • /
    • 2013
  • Port size 80mm or above large-flow type solenoid valves are extensively used in dust collector and power plants. These multi-stage solenoid valve have few problem. first, multi-solenoid valves are almost depend on imports and there are weak in the brine environment and the low energy efficiency. Because these problem, increased the necessity of research on the development of large flow and high pressure type solenoid valves. In this study, describe the design method of multi-stage solenoid test bench and confirm the influence valve performance on several parameter such as diaphragm orifice diameter. At first, each part has modeled by AMESim simulation tool and combining them. This AMESim virtual multi-stage solenoid valve found influence valve performance on the valve parameter. Finally developed the multi-stage solenoid valve and verified that performance on experimental result.