
 <Original Paper> Journal of the Korean Society for Nondestructive Testing, Vol. 36, No. 2: 112-120, 2016
ISSN 1225-7842 / eISSN 2287-402X   http://dx.doi.org/10.7779/JKSNT.2016.36.2.112

Diffraction Corrections for Second Harmonic Beam Fields and Effects on 
the Nonlinearity Parameter Evaluation

Hyunjo Jeong* , Sungjong Cho*, Kiwoong Nam* and Janghyun Lee*

Abstract The nonlinearity parameter is frequently measured as a sensitive indicator in damaged material 
characterization or tissue harmonic imaging. Several previous studies have employed the plane wave solution, and 
ignored the effects of beam diffraction when measuring the non-linearity parameter . This paper presents a multi- 
Gaussian beam approach to explicitly derive diffraction corrections for fundamental and second harmonics under 
quasilinear and paraxial approximation. Their effects on the nonlinearity parameter estimation demonstrate 
complicated dependence of  on the transmitter-receiver geometries, frequency, and propagation distance. The 
diffraction effects on the non-linearity parameter estimation are important even in the nearfield region. Experiments 
are performed to show that improved  values can be obtained by considering the diffraction effects.
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1. Introduction

When an ultrasonic transducer radiates waves 
into a medium, the on-axis response of ampli- 
tude and phase will deviate from that of a plane 
wave. This phenomenon is known as diffraction 
effects. One needs to adjust amplitudes or 
phases of actual acoustic waves to their plane 
wave values before they are used. This is the 
effect referred to as diffraction correction. In 
linear acoustics, it is well known that accurate 
corrections for diffraction effects are necessary 
for precise measurements ultrasonic quantities 
such as attenuation or velocity. It is also 
important to make appropriate corrections for 
diffraction in nonlinear acoustics, for instance, to 
realize a high precision measurement of the 
nonlinearity parameter   using the finite ampli- 
tude method [1].

The early studies on diffraction corrections 
associated with linear waves date back to 
Williams [2]. He obtained an exact integral 
expression for diffraction correction for a uni- 

formly vibrating piston when both transmitting 
and receiving transducers are the same size. 
Based on this, Rogers and Van Buren [3] 
developed an approximate solution of a closed 
form, valid for ()1/2

≫1. Williams’ diffraction 
theory was later used by Khimunin [4-6] to 
formulate a diffraction correction relative to 
plane waves. In Khimunin’s [4,5] approach, the 
diffraction correction was defined as the ratio of 
the average pressure over a receiving transducer 
to the plane wave pressure at the same distance. 
Limitations of previous studies on receiver 
geometries have been addressed by Yamada and 
Fujii [7], Beissner [8] and Szabo [9], where the 
diffraction correction was solved for an arbitrary 
receiver size. All these diffraction issues apply 
to the corrections of fundamental wave fields. 
An approximate diffraction correction for the 
second harmonic wave was presented by Ingenito 
and Williams [10], and used in later studies of 
nonlinearity parameter measure- ments [11,12]. 
Diffraction effects were neglected in many 
previous studies and measurements were usually 
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made within  the near-field region of the piston 
transducer [13,14]. This imposed restrictions 
related to the size of sample being studied.

The purpose of this study is to explicitly 
derive diffraction corrections for the fundamental 
and second harmonics and to show through 
simulation and experiment the importance of 
making diffraction corrections for accurate 
determination of nonlinearity parameter  . In the 
companion paper [15], we have developed an 
efficient and accurate method to calculate 
nonlinear diffraction beam fields using the 
multi-Gaussian (MGB) model approach. It was 
also shown that the MGB model approach, due 
to its paraxial approximation, easily separates 
diffraction effects out of combined beam fields. 
Since diffraction corrections depend on receiver 
types, we present closed-form expressions of 
MGB model-based diffraction corrections for 
point receiver and area receiver. Their accuracy 
is tested through comparisons with integral 
solution-based approach. Finally it is demon- 
strated through simulation and experiment that 
improved   can be acquired with proper 
diffraction corrections.

2. Integral Solutions and Received Beam Fields

Two governing equations for the fundamental 
and second harmonic pressure components were 
derived in Ref. [15] using the quasilinear theory 
of the Westervelt equation. Solutions for these 
equations were then obtained by integrating over 
the product of the Green’s function and 
appropriate source function to sum up the 
contributions from all source points. For a 
circular piston radiator of radius a with source 
pressure  at ′′′   and the   axis 
taken as the propagation direction the integral 
solutions are given by 
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where  is the wave number,  is the 
longitudinal wave velocity of fundamental wave, 
 is the density,   is the acoustic nonlinearity 

parameter of fluids, 2 2 2( ) ( )r x x y y z′ ′= − + − + , and 
2 2 2( ) ( ) ( )R x x y y z z′ ′ ′= − + − + − . 

Eq. (1) represents the transducer radiation as a 
superposition of spherical waves radiating from 
point sources distributed on the plane ′ . 
Eq. (1) is known as the Rayleigh-Sommerfeld 
(RS) integral to the linear wave equation.

Harmonic generation experiments are usually 
performed in a through-transmission mode. 
Propagated beam fields can be acquired on the 
reception side by a point receiver or by a finite 
area receiver of the same shape and size as the 
transmitting transducer. In case of finite size 
receivers the received signals can be obtained by 
taking the weighted average of the calculated 
field parameter over the receiver aperture. 
Therefore, magnitudes of received signals will 
depend on the receiver types, and the diffraction 
corrections will change accordingly. In this 
study, we will consider an ideal point receiver 
and a circular area receiver to calculate received 
signals and diffraction corrections.

First consider the received pressure by a 
point receiver moving along the   axis. Then, 
the on-axis pressures of fundamental and second 
harmonic fields can be obtained from Eqs. (1) 
and (2) by setting     : 

0
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where 2 2 2r x y z′ ′= + + , 2 2 2R x y z′ ′= + + , and 

1( , , )p x y z′ ′ ′  is given by Eq. (1).
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To calculate the received pressure at a 
distance   by a circular transducer of radius , 
the concept of average pressure will be used 
and defined as follows: 

2 0

1( ) ( , , )2 ,   1, 2
b

n np z p x y z rdr n
b

π
π

= =∫% (5)

where ( , , )np x y z  is computed from Eqs. (1) 

and (2), and 2 2r x y= + . 

3. MGB Models and Received Beam Fields 

We have derived the multi-Gaussian beam 
(MGB) models to efficiently compute the 
fundamental and second harmonic beam fields 
obtained by the integral solutions [15]. The MGB 
models provided accurate results when compared 
with those of integral solutions for different 
transmitter-receiver geometries. Moreover, since 
the MGB model approach, due to the paraxial 
approximation, easily separates diffraction effects 
out of combined beam fields, diffraction 
corrections can be obtained explicitly. Since 
received beam fields depend on receiver types, 
diffraction corrections will vary accordingly. In 
this section, we will derive MGB model-based 
diffraction corrections for two types of receivers: 
point receiver and area receiver.    

From the MGB model approach in Ref. 
[15], the pressure beam fields of the funda- 
mental and the second harmonic are respectively 
given by 

[ ]
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where   
  is the Rayleigh distance, 

  , and  
 . It is 

noticed that in Eqs. (6) and (7) the first term in 
the right-hand side represents the plane wave 
solution for the fundamental and the second 
harmonic, respectively,

1 0( ) exp( )planep z p ikz= (8)
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The same procedure as in the previous 
section can be followed to obtain the received 
beam fields from the MGB model equations. 
When a point receiver is used, the received 
beam fields for the fundamental and second 
harmonics along the   axis can be obtained by 
setting      in Eqs. (6) and (7) 

1 1 1 1( ) ( 0, 0, ) ( ) ( , , )MGB MGB plane MGBp z p x y z p z D a f z= = = =

(10)

2 2 2 2( ) ( 0, 0, ) ( ) ( , , )MGB MGB plane MGBp z p x y z p z D a f z= = = =

(11)  

where 
   and 

  are the 

MGB model-based diffraction corrections of the 
fundamental and second harmonics for a point 
receiver
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When a circular transducer of radius  is used 
as a receiver, the received beam fields for the 
fundamental and second harmonics can be 
obtained by applying the concept of averaging 
to Eqs. (6) and (7). The results can be written 
in the following forms:
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where 1 ( , , , )MGBD a b f z%  and 2 ( , , , )MGBD a b f z%  are the 
MGB model-based diffraction corrections of the 
fundamental and second harmonics for a circular 
receiver of radius 
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The paraxial MGB approach easily separates 
diffraction corrections from total beam fields 
obtained from the quasilinear theory. As shown 
in Eqs. (12), (13), (16) and (17), the MGB 
model-based diffraction corrections for the 
fundamental and second harmonics are given in 
explicit forms and depend on the transmitter- 
receiver geometries, the fundamental frequency 
and the propagation distance. On the contrary, 
the integral solution approach provides combined 
beam fields of plane wave and diffraction 
effects, so that it is not easy to separate one 
effect from the other. In the next section, we 
will define the integral solution-based diffraction 
corrections.

It can be proved that Eq. (16) is the same 
as diffraction correction derived by Rogers and 
Van Buren[3] in linear acoustics when the 
circular transmitter and receiver sizes are the 
same, 2=2.

4. Integral Solution-Based Diffraction Corrections 

Now we define diffraction corrections based 
on the integral solutions of received fields in 
section 3, Eqs. (3) and (4) for point receivers, 
and Eq. (5) for area receivers. Following the 
definition by Khimunin[4,5] and neglecting 
medium absorption, the diffraction corrections 
for the fundamental and the second harmonic 
can be found in terms of average pressure of 

the fundamental and the second harmonic over 
the receiver area at a distance   divided by 
their corresponding plane wave pressures at the 
same distance. For a point receiver, the diffraction 
corrections for the fundamental and second 
harmonics can be defined as 
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In a similar manner, for a circular receiver of 
radius  the diffraction corrections are defined as
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The diffraction corrections defined in Eqs. (16) 
to (19) will be referred to as the integral 
solution (IS)-based diffraction corrections. 

When the transmitting and receiving trans- 
ducers are the same, an approximate diffraction 
correction for the second harmonic was presented 
by Ingenito and Williams [10]. 

2

2 10

1( )
2

z
D a b, f ,z D z d

z
ψ ψ⎞⎛= = −⎜ ⎟

⎝ ⎠∫ % (22)

This approximate diffraction corrections were 
subsequently used by Cobb [11] and Hurley and 
Fortunko [12] in their measurements of non- 
linearity parameter of fluids and solids. We will 
test validity of Eq. (22) by comparing with 
more accurate diffraction corrections, Eqs. (17) 
and (21). 

5. Comparison of Diffraction Corrections

For simulation, consider a piston transducer 
of 2=9.5 mm diameter radiating into water at 
3.5 MHz, where  denotes the radius of the 
transmitting transducer. The properties of water 
used are: =1480 m/s, =1000 kg/m3, =3.5. 
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IS IS

(a) (b)

Fig. 1 Comparison of MGB model-based diffraction corrections with integral solution (IS)-based diffraction 
corrections for a point receiver: (a) fundamental wave, and (b) second harmonic wave

IS

(a) (b)

IS IS

10

(c) (d)

IS IS

(e) (f)

Fig. 2 Comparison of MGB model-based diffraction corrections with integral solution (IS)-based diffraction 
corrections for different transmitter and receiver sizes: (a), (b) 2a=9.5 mm, 2b=6.35 mm, (c), (d) 
2a=9.5 mm, 2b=9.5 mm, and (e), (f) 2a=9.5 mm, 2b=12.7 mm. Figures in the left column represent 
diffraction corrections for the fundamental, while figures in the right column represent diffraction 
corrections for the second harmonic.
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The number of expansion coefficients for  
and  used in the MGB model are known to 
have effects on the beam field of the funda- 
mental wave in the very near field. =25 
expansion coefficients are used here to calculate 
the MGB model-based diffraction corrections 
because a larger number of expansion coeffi- 
cients provided better beam fields [15]. The 
expansion coefficients are listed in [16]. 

First, MGB model-based diffraction correc- 
tions [Eqs. (12) and (13)] are compared with 
integral solution-based diffraction corrections 
[Eqs. (18) and (19)] for a point receiver. As 
seen in Fig. 1, the overall agreement between 
two models is good except a short region close 
to the source transducer. This occurs because of 
paraxial approximation used in MGB models. 
The point receiver considered here is an ideal 
case not frequently encounter in reality. As can 
be seen in further simulation below, the effect 
of paraxial approximation is negligible in cases 
of finite size receivers, and the overall 
agreement of MGB model with the integral 
solution is pretty good. 

Next, the accuracy of MGB model-based 
diffraction corrections [Eqs. (16) and (17)] was 
tested for area receivers by comparing with 
integral solution-based diffraction corrections 
[Eqs. (20) and (21)]. The accuracy of approxi- 
mate second harmonic diffraction corrections, 
Eq. (22), was also tested when the receiver 
diameter 2 equals the transmitter diameter 2. 

In case of finite size receivers, the effect of 
paraxial approximation is negligible, and the 
overall agreement of MGB model results with 
integral solution-based results is pretty good for 
the most part of the range covered as seen in 
Figs. 2(a) through 2(f). The approximate 
diffraction correction for the second harmonic, 
Eq. (22), shows considerable difference when 
compared with the integral solution- or the 
MGB model-based diffraction corrections, as 
seen in Fig. 2(d). The difference is about 15% 

at propagation distance =0.3 m. Therefore, one 
should be careful in using this equation for 
diffraction corrections of the second harmonic. 

 
6. Effects of Diffraction Correction on 

Nonlinearity Parameter

The plane wave solutions, Eqs. (8) and (9), 
provide a practical means to determine the 
nonlinearity parameter  . From these equations, 
the expression for calculating   can be obtained 
as 

2
2

2
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( )2
[ ( )]

plane

plane

p zc
kz p z
ρβ = (23)

The issue with using Eq. (23) to estimate   
is that it is based on the plane wave 
assumption, and do not fully account for the 
actual acoustic fields. The plane wave pressure 
should be replaced with actual pressure with 
proper diffraction correction. Eqs. (14) and (15) 
show the average pressure that is expressed in a 
quasi-plane wave form modified by diffraction 
corrections. Use of Eqs. (14) and (15) in Eq. 
(23) thus yields the   expression in terms of 
the average pressure corrected for diffraction as 
follows. It can also be expressed in terms of the 
average displacement using the relation 

, 1, 2n np i cn A nρ ω=− = .

where  and  are the average 

displacement of the fundamental and the second 
harmonic, respectively, at distance  . Since the 
diffraction corrections found from the MGB 
model agree well with the integral solutions, 
either of them can be used in Eq. (24). 

According to Eq. (24), the nonlinearity 
parameter   can now be determined, at a 
distance   from the transmitter, using the 
received displacement of the fundamental, , 
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Fig. 3 Effects of diffraction correction (DC) on the 
determination of nonlinearity parameter   for 
different transmitter and receiver sizes: (a) 
2a=9.5 mm, 2b=6.35 mm, (b) 2a=9.5 mm, 
2b=9.5 mm, and (c) 2a=9.5 mm, 2b=12.7 mm
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Fig. 4 Effects of diffraction corrections on   
determination through harmonic generation 
experiments in water: (a) before diffraction 
corrections, and (b) after diffraction corrections

and that of the second harmonic, , with 

proper corrections for diffraction. Fig. 3 shows 
simulation results on the effects of making 
diffraction corrections on   determination for 
different combinations of transmitter-receiver 
sizes. The horizontal line was included to 
represent the plane wave solution for water,  = 
3.5 [11,17]. For given fundamental frequency 

and transmitter size (diameter 2), diffraction 
corrections show complicated behavior depending 
on the propagation distance and receiver size 
(diameter 2). The nearfield distance in this 
simulation is estimated to be about 0.53 m at 
3.5 MHz. When the measurements are made 
within the nearfield using the same size of 
receiver as the transmitter [Fig. 3(b)], use of 
uncorrected displacements will overestimate   
by about 14% at maximum. When a larger size 
receiver is used [Fig. 3(c)], this overestimation 
becomes worse. On the other hand, use of a 
smaller receiver [Fig. 3(a)] underestimates   by 
about 5%. According to this observation, the 
receiver size can be optimized to minimize the 
diffraction effects. Based on these simulation 
results, we conclude that it is generally 
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important to make diffraction corrections for 
accurate determination of  even when the 
measurements are performed within the nearfield 
region.  

The effects of diffraction corrections on   
estimation were further investigated through 
harmonic generation experiments in water. 
Experimental details can be found in [18] 
including receiver calibration for absolute meas- 
urements of fundamental and second harmonic 
displacements. 

The nonlinearity parameter  of water was 
calculated according to Eq. (24) using the 
measured displacement of the fundamental and 
that of the second harmonic at each transmitter- 
receiver distance  . Fig. 4 shows such results 
on   estimation before and after diffraction 
corrections were made. The horizontal line 
represents the literature value of   = 3.5. Fig. 
4(a) shows that the uncorrected   fluctuates and 
departs noticeably from the constant value of 
3.5. After corrections were made for diffraction 
in Fig. 4(b), considerable improvements are 
observed in   values. It is found that after 
diffraction corrections  can be determined with 
less than 10% errors except for very short 
transmitter-receiver distances, as can be seen in 
Fig. 4(b).   

7. Conclusions and Future Work

The multi-Gaussian beam(MGB) model-based 
diffraction corrections for the fundamental and 
second harmonics were developed in this study. 
They are given in closed-forms under the 
paraxial and quasilinear approximation, and are 
functions of transmitter and receiver geometries, 
fundamental frequency, and propagation distance. 
They were found accurate and computationally 
efficient when compared to the integral 
solution-based diffraction corrections. Effects of 
making diffraction corrections on the estimation 
of nonlinearity parameter  were studied through 

simulation and experiment in water. Both results 
showed significance of making proper diffraction 
corrections for accurate determination of  . 
Attenuation corrections are another factor to be 
considered in nonlinearity parameter evaluation, 
and future study should address this issue. The 
diffraction corrections derived in this work can 
also be applied to isotropic solids if further 
assumptions are made in the nonlinear wave 
equation on which they are based. 
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