• 제목/요약/키워드: Multi lane detection

검색결과 28건 처리시간 0.023초

자율주행 차량을 위한 멀티 레이블 차선 검출 딥러닝 알고리즘 (Multi-label Lane Detection Algorithm for Autonomous Vehicle Using Deep Learning)

  • 박채송;이경수
    • 자동차안전학회지
    • /
    • 제16권1호
    • /
    • pp.29-34
    • /
    • 2024
  • This paper presents a multi-label lane detection method for autonomous vehicles based on deep learning. The proposed algorithm can detect two types of lanes: center lane and normal lane. The algorithm uses a convolution neural network with an encoder-decoder architecture to extract features from input images and produce a multi-label heatmap for predicting lane's label. This architecture has the potential to detect more diverse types of lanes in that it can add the number of labels by extending the heatmap's dimension. The proposed algorithm was tested on an OpenLane dataset and achieved 85 Frames Per Second (FPS) in end to-end inference time. The results demonstrate the usability and computational efficiency of the proposed algorithm for the lane detection in autonomous vehicles.

스마트 내비게이션을 위한 TPLF 기반 다중차선 검출 기법 (Multi-lane Detection using TPLF for Smart Navigation)

  • 김성호;권순
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2014년도 춘계학술대회
    • /
    • pp.896-897
    • /
    • 2014
  • 스마트 내비게이션을 위해 차량의 차선 위치를 인식할 필요가 있다. 본 논문에서는 이를 위한 선행 연구로 다중차선 검출 기법을 제안한다. 기존 Box filter, Step filter가 클러터에 취약한 부분을 보완하기 위해 Three Point Laplacian Filter (TPLF)를 제안하고 실험적으로 그 가능성을 검증한다.

  • PDF

어려운 고속도로 환경에서 Lidar를 이용한 안정적이고 정확한 다중 차선 인식 알고리즘 (Stable and Precise Multi-Lane Detection Algorithm Using Lidar in Challenging Highway Scenario)

  • 이한슬;서승우
    • 전자공학회논문지
    • /
    • 제52권12호
    • /
    • pp.158-164
    • /
    • 2015
  • 차선인식은 차선 유지, 경로 계획 등을 가능하게 하는 기술로서 자율주행차를 구성하는 가장 중요한 요소 중 하나이다. 카메라 센서를 이용한 연구가 많이 진행되었으나 센서의 특성상 화각의 한계가 존재하며 조도 환경에 취약한 단점이 있다. 반면 Lidar 센서는 넓은 화각과 함께 표면의 반사율 정보를 이용하기에 조도의 영향을 받지 않는 장점이 있다. 기존 연구에선 Hough 변환, 히스토그램 등의 방법을 이용하였는데 도로 표시들이 혼재한 상황에서 올바른 차선 인식이 이루어지지 않거나 다수의 차선이 존재함에도 주행 차선만 인식 되는 문제점들이 존재한다. 본 논문에서는 RANSAC과 regularization을 적용해 도로 표시가 혼재된 고속도로 환경에서도 정확하고 안정적인 다중 차선 인식 알고리즘을 제안한다. 정확한 차선 후보군 추출을 위해 원 모델 RANSAC을 적용하였고 안정적인 다중 차선 검출을 위해 피팅에 regularization을 추가로 제안하였다. 직접 취득한 도로 주행 데이터에 적용하여 높은 정확도와 실시간성을 정량적으로 검증하였다.

임베디드 멀티코어 플랫폼을 이용한 차선검출 (Lane Detection using Embedded Multi-core Platform)

  • 이광엽;김동한;박태룡
    • 전기전자학회논문지
    • /
    • 제15권3호
    • /
    • pp.255-260
    • /
    • 2011
  • 본 논문은 허프 변환을 이용한 차선 검출 알고리즘의 병렬화 기법을 제안한다. 허프 변환은 영상의 모든 위치에 존재 가능한 모든 후보 ${\Theta}$ 들에 대해 ${\rho}$ 값을 구해야 하므로 연산량이 많기 때문에 연산에 많은 시간이 소요되는 단점이 있다. 이를 멀티코어 환경에서 병렬 처리하는 구조를 제안 한다. 또한 허프 변환 이외에도 전처리 과정에 해당하는 노이즈 제거와 에지 검출도 병렬 처리 하였다. 제안하는 알고리즘은 기존 알고리즘에 비해 5.17배의 성능 향상이 있다.

다중센서 기반 차선정보 시공간 융합기법 (Lane Information Fusion Scheme using Multiple Lane Sensors)

  • 이수목;박기광;서승우
    • 전자공학회논문지
    • /
    • 제52권12호
    • /
    • pp.142-149
    • /
    • 2015
  • 단일 카메라 센서를 기반으로 한 차선검출 시스템은 급격한 조도 변화, 열악한 기상환경 등에 취약하다. 이러한 단일 센서 시스템의 한계를 극복하기 위한 방안으로 센서 융합을 통해 성능 안정화를 도모할 수 있다. 하지만, 기존 센서 융합의 연구는 대부분 물체 및 차량을 대상으로 한 융합 모델에 국한되어 차용하기 어렵거나, 차선 센서의 다양한 신호 주기 및 인식범위에 대한 상이성을 고려하지 않은 경우가 대부분이었다. 따라서 본 연구에서는 다중센서의 상이성을 고려하여 차선 정보를 최적으로 융합하는 기법을 제안한다. 제안하는 융합 프레임워크는 센서 별 가변적인 신호처리 주기와 인식 신뢰 범위를 고려하므로 다양한 차선 센서 조합으로도 정교한 융합이 가능하다. 또한, 새로운 차선 예측 모델의 제안을 통해 간헐적으로 들어오는 차선정보를 세밀한 차선정보로 정밀하게 예측하여 다중주기 신호를 동기화한다. 조도환경이 열악한 환경에서의 실험과 정량적 평가를 통해, 제안하는 융합 시스템이 기존 단일 센서 대비 인식 성능이 개선됨을 검증한다.

CNN을 사용한 차선검출 시스템 (Lane Detection System using CNN)

  • 김지훈;이대식;이민호
    • 대한임베디드공학회논문지
    • /
    • 제11권3호
    • /
    • pp.163-171
    • /
    • 2016
  • Lane detection is a widely researched topic. Although simple road detection is easily achieved by previous methods, lane detection becomes very difficult in several complex cases involving noisy edges. To address this, we use a Convolution neural network (CNN) for image enhancement. CNN is a deep learning method that has been very successfully applied in object detection and recognition. In this paper, we introduce a robust lane detection method based on a CNN combined with random sample consensus (RANSAC) algorithm. Initially, we calculate edges in an image using a hat shaped kernel, then we detect lanes using the CNN combined with the RANSAC. In the training process of the CNN, input data consists of edge images and target data is images that have real white color lanes on an otherwise black background. The CNN structure consists of 8 layers with 3 convolutional layers, 2 subsampling layers and multi-layer perceptron (MLP) of 3 fully-connected layers. Convolutional and subsampling layers are hierarchically arranged to form a deep structure. Our proposed lane detection algorithm successfully eliminates noise lines and was found to perform better than other formal line detection algorithms such as RANSAC

IMAGE PROCESSING TECHNIQUES FOR LANE-RELATED INFORMATION EXTRACTION AND MULTI-VEHICLE DETECTION IN INTELLIGENT HIGHWAY VEHICLES

  • Wu, Y.J.;Lian, F.L.;Huang, C.P.;Chang, T.H.
    • International Journal of Automotive Technology
    • /
    • 제8권4호
    • /
    • pp.513-520
    • /
    • 2007
  • In this paper, we propose an approach to identify the driving environment for intelligent highway vehicles by means of image processing and computer vision techniques. The proposed approach mainly consists of two consecutive computational steps. The first step is the lane marking detection, which is used to identify the location of the host vehicle and road geometry. In this step, related standard image processing techniques are adapted for lane-related information. In the second step, by using the output from the first step, a four-stage algorithm for vehicle detection is proposed to provide information on the relative position and speed between the host vehicle and each preceding vehicle. The proposed approach has been validated in several real-world scenarios. Herein, experimental results indicate low false alarm and low false dismissal and have demonstrated the robustness of the proposed detection approach.

레이저 검지기를 이용한 이동식 다차로 속도위반 알고리즘 연구 (A Study on Development of Mobile Multi-lane Speed Enforcement System With a Laser Detector)

  • 유성준;박진용
    • 한국안전학회지
    • /
    • 제32권4호
    • /
    • pp.114-121
    • /
    • 2017
  • In order to overcome the limitations of the mobile speed system for 1 lane, this study is used a multi-laser beam to develop a mobile speed measuring system, using a multi-phase beam. By using multi-laser beam, least squares algorithms and speed error processing algorithms were developed to improve speed accordancy and speed error rates compared to conventional mobile speed meters using a single laser beam. A field test showed that 80.0 percent of 3 lane and 87.0 percent of 4 lane were appropriate for the mobile speed system. With the development of the mobile speed measuring system, it is expected to dramatically reduce the accidents caused by the speed of traffic. It is also expected to effectively operate equipment and manage the cost by improving manpower and providing improved enforcement accuracy, by contributing positively to public institution and public affairs.

Lateral Offset Estimation Based on Detection of Lane Markings

  • Jiang, Gang-Yi;Park, Jong-Wook;Song, Byung-Suk;Bae, Jae-Wook
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2000년도 ITC-CSCC -2
    • /
    • pp.769-772
    • /
    • 2000
  • In this paper, a new lateral offset estimation method, based on image processing techniques, is proposed for driver assistant system. A new description on lane markings in the image plane is presented, and its properties are discussed and used to detect lane markings. Multi-frame lane detection and analysis are adopted to improve the proposed lateral control method. An algorithm for obstacle detection is also developed. Experimental results show that the proposed method performs lateral control effectively.

  • PDF

멀티코어를 이용한 차선 검출 병렬화 시스템 설계 (Design of Parallel Processing of Lane Detection System Based on Multi-core Processor)

  • 이효찬;문대철;박인학;허강
    • 한국정보통신학회논문지
    • /
    • 제20권9호
    • /
    • pp.1778-1784
    • /
    • 2016
  • 본 논문에서는 차선 검출 알고리즘에 병렬처리를 적용하여 성능을 개선하였다. 차선 검출은 지능형 보조 시스템으로써 자동차가 차선을 이탈하면 경보음 또는 핸들을 보정해줌으로써 운전자를 돕는 보조 시스템이다. 병렬 처리 알고리즘 중 데이터 레벨 병렬처리는 설계가 간단하지만 병목현상이 발생하는 문제가 있다. 제안하는 고속 데이터 레벨 병렬처리 알고리즘은 병목현상을 줄여 성능이 향상되었다. 실제 블랙박스 도로 영상을 도입하여 알고리즘을 측정한 결과 싱글 코어 경우 약 30 Frames/sec의 성능을 얻었다. 병렬처리를 적용한 결과로써 옥타코어 기준으로 데이터 레벨인 경우 약 100 Frames/sec의 성능을, 고속 데이터 레벨인 경우는 약 150 Frames/sec의 성능을 얻을 수 있다.