• Title/Summary/Keyword: MspI

Search Result 117, Processing Time 0.022 seconds

Identification of Mycobacteria Using Polymerase Chain Reaction and Sputum Sample (객담을 이용한 Mycobacteria의 검출과 중합효소 연쇄반응의 민감성 비교)

  • Jang, Hyung Seok
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.47 no.2
    • /
    • pp.83-89
    • /
    • 2015
  • Although Mycobacterium tuberculosis complex strains remain responsible for the majority of diseases caused by mycobacterial infections worldwide, the increase in HIV (human immuno deficiency virus) infections has allowed for the emergence of other non-tuberculous mycobacteria as clinically significant pathogens. M. tuberculosis was detected by two-tube nested polymerase chain reaction (PCR) and non-tuberculous mycobacteria was detected by PCR-restriction fragment length polymorphism (RFLP) with Msp I. Result of niacin test is equal to result of two-tube nested PCR after culture for M. tuberculosis. In this study, acid fast bacilli stain (AFB. stain) >2+ case, Detection of Mycobacteria is similar to result before culture and after culture. AFB. stain <1+ case, result of mycobacteria is distinguished. Conclusionly, these results suggest that identification of mycobacteria must go side by side both culture and PCR for more fast and accuracy.

Bacterial diversity of the Marine Sponge, Halichondria panicea by ARDRA and DGGE (ARDRA와 DGGE를 이용한 Halichondria panicea 해면의 공생세균 다양성)

  • Park, Jin-Sook
    • Korean Journal of Microbiology
    • /
    • v.51 no.4
    • /
    • pp.398-406
    • /
    • 2015
  • Culture-dependent ARDRA and culture-independent DGGE were employed to investigate the bacterial community associated with the marine sponge Halichondria panicea collected from Jeju Island. A total of 120 bacterial strains associated with the sponge were cultivated using modified Zobell and Marine agar media. PCR amplicons of the 16S rRNA gene from the bacterial strains were digested with the restriction enzymes HaeIII and MspI, and then assigned into different groups according to their restriction patterns. The 16S rRNA gene sequences derived from ARDRA patterns showed more than 96% similarities compared with known bacterial species, and the isolates belonged to four classes, Alphaproteobacteria, Gammaproteobacteria, Bacteroidetes, and Firmicutes, of which Alphaproteobacteria was dominant. DGGE fingerprinting of 16S rRNA genes amplified from the sponge-derived total gDNA showed 14 DGGE bands, and their sequences showed 100% similarities compared with the sequences available in GenBank. The sequences derived from DGGE bands revealed high similarity with the uncultured bacterial clones. DGGE revealed that bacterial community consisted of seven classes, including Alphaproteobacteria, Gammaproteobacteria, Acidobacteria, Actinobacteira, Bacteroidetes, Cyanobacteria, and Chloroflexi. According to both the ARDRA and DGGE methods, three classes, Alphaproteobacteria, Gammaproteobacteria, and Bacteroidetes, were commonly found in H. panicea. However, overall bacterial community in the sponge differed depending on the analysis methods. Sponge showed more various bacterial community structures in culture independent method than in culture-dependent method.

Phylogenetic Analysis of Bacterial Diversity in the Marine Sponge, Asteropus simplex, Collected from Jeju Island (제주도에서 채집한 해양 해면, Asteropus simplex의 공생세균에 관한 계통학적 분석)

  • Jeong, In-Hye;Park, Jin-Sook
    • Korean Journal of Microbiology
    • /
    • v.48 no.4
    • /
    • pp.275-283
    • /
    • 2012
  • Culture-dependent RFLP and culture-independent DGGE were employed to investigate the bacterial community associated with the marine sponge Asteropus simplex collected from Jeju Island. A total of 120 bacterial strains associated with the sponge were cultivated using modified Zobell and MA media. PCR amplicons of the 16S rDNA from the bacterial strains were digested with the restriction enzymes HaeIII and MspI, and then assigned into different groups according to their restriction patterns. The 16S rDNA sequences derived from RFLP patterns showed more than 94% similarities compared with known bacterial species, and the isolates belonged to five phyla, Alphaproteobacteria, Gammaproteobacteria Actinobacteria, Bacteroidetes, and Firmicutes, of which Gammaproteobacteria was dominant. DGGE fingerprinting of 16S rDNAs amplified from the sponge-derived total gDNA showed 12 DGGE bands, and their sequences showed more than 90% similarities compared with available sequences. The sequences derived from DGGE bands revealed high similarity with the uncultured bacterial clones. DGGE revealed that bacterial community consisted of seven phyla, including Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria, Deltaproteobacteria, Actinobacteira, Chloroflexi, and Nitrospira. Alphaproteobacteria, Gammaproteobacteria, and Actinobacteria were commonly found in bacteria associated with A. simplex by both RFLP and DGGE methods, however, overall bacterial community in the sponge differed depending on the analysis methods. Sponge showed more various bacterial community structures in culture-independent method than in culture-dependent method.

Seasonal Differences of Bacterial Communities Associated with the Marine Sponge, Hymeniacidon sinapium (주황해변해면(Hymeniacidon sinapium) 공생세균 군집의 계절적 차이)

  • Jeong, Jong-Bin;Park, Jin-Sook
    • Korean Journal of Microbiology
    • /
    • v.48 no.4
    • /
    • pp.262-269
    • /
    • 2012
  • Seasonal differences of the cultivable bacterial communities associated with the marine sponge, Hymeniacidon sinapium, between spring and summer were analyzed through the Amplified Ribosomal DNA Restriction Analysis (ARDRA). For the cultivation of the bacterial isolates, modified Zobell and MA media were used. The 16S rDNA of individual strains were amplified and fragmented by using two restriction enzymes, HaeIII and MspI. As a result, 23 ARDRA types from the spring sponge and 28 types from the summer sponge were obtained. The partial sequencing result of 1 to 3 selected strains from each types showed over 94% similarities with the known species from the public database. The bacterial communities from the sponge, captured on spring, contained 4 phyla: Actinobacteria, Alphaproteobacteria, Gammaproteobacteria, and Firmicutes. There were 5 phyla observed from the bacterial communities associated with the sponge, captured on summer: Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria, Firmicutes, and Bacteroidetes. Gammaproteobacteria was predominant group in both spring and summer, accounted for 33.8% of total in spring and 67.4% in summer, showed increase pattern on summer. Because Firmicutes and Actinobacteria participated in 30.2% and 8.3% of the spring sponge while they represented only 6.9% and 0% of the summer sponge, both bacterial groups showed decrease drift on summer. Betaproteobacteria (4.7%) and Bacteroidetes (4.7%) were only observed on the sponge captured on summer. On the sponge, Hymeniacidon sinapium, more diverse bacterial communities were shown on summer than on spring, and even from the same sponge, there were seasonal differences.

Comparative Analysis of the Community of Culturable Bacteria Associated with Sponges, Spirastrella abata and Spirastrella panis by 16S rDNA-RFLP (16S rDNA-RFLP에 의한 Spirastrella abata와 Spirastrella panis 해면에 서식하는 배양가능한 공생세균 군집의 비교)

  • Cho, Hyun-Hee;Park, Jin-Sook
    • Korean Journal of Microbiology
    • /
    • v.45 no.2
    • /
    • pp.155-162
    • /
    • 2009
  • A cultivation-based approach was employed to compare the culturable bacterial diversity associated with two phylogenetically closely related marine sponges, Spirastrella abata and Spirastrella panis, which have geologically overlapping distribution patterns. The bacteria associated with sponge were cultivated using MA medium supplemented with 3% sponge extracts. Community structures of the culturable bacteria of the two sponge species were analyzed with PCR-RFLP (restriction fragment length polymorphism) based on 16S rDNA sequences. The RFLP fingerprinting of 16S rDNA digested with HaeIII and MspI, revealed 24 independent RFLP types, in which 1-5 representative strains from each type were partially sequenced. The sequence analysis showed >98.4% similarity to known bacterial species in public databases. Overall, the microbial populations of two sponges investigated were found to be the members of the classes; Alphaproteobacteria, Gammaproteobacteria, Firmicutes, and Actinobacteria. The Alphaproteobacteria were predominant in the bacterial communities of the two sponges. Gammaproteobacteria represented 38.5% of bacterial community in S. abata. Whereas only 1.6% of this class was present in S. panis. Bacillus species were dominat in S. panis. Bacillus species were found to be 44.3% of bacterial species in S. panis, while they were only 9.7% in S. abata. It is interesting to note that Planococcus maritimus (8.1%, phylum Firmicutes) and Psychrobacter nivimaris (28.9%, phylum Gammaproteobacteria) were found only in S. abata. This result revealed that profiles of bacterial communities from the sponges with a close phylogenetic relationship were highly species-specific.

A Comparison of Bacterial Diversity Associated with the Sponge Spirastrella abata Depending on RFLP and DGGE (RFLP와 DGGE에 따른 해면 Spirastrella abata 공생세균의 다양성 비교)

  • Jeong, Eun-Ji;Im, Choon-Soo;Park, Jin-Sook
    • Korean Journal of Microbiology
    • /
    • v.46 no.4
    • /
    • pp.366-374
    • /
    • 2010
  • Culture-dependent RFLP and culture-independent DGGE were employed to investigate the bacterial community associated with the marine sponge Spirastrella abata. A total of 164 bacterial strains associated with the sponge were cultivated using Zobell and Natural sea salt media. PCR amplicons of the 16S rDNA from the bacterial strains were digested with the restriction enzymes HaeIII and MspI, and then assigned into different groups according to their restriction patterns. The 16S rDNA sequences derived from RFLP patterns showed more than 95% similarities compared with known bacterial species, and the isolates belonged to four phyla, Proteobacteria (Alphaproteobacteria, Gammaproteobacteria), Actinobacteria, Firmicutes, and Bacteriodetes, of which Alphaproteobacteria was dominant. DGGE fingerprinting of 16S rDNAs amplified from the sponge- derived total gDNA showed five major DGGE bands, and their sequences showed more than 96% similarities compared with available sequences. The sequences derived from DGGE bands revealed high similarity with the uncultured bacterial clones. DGGE revealed that bacterial community consisted of four phyla, including Proteobacteria (Alphaproteobacteria, Gammaproteobacteria), Actinobacteria, Spirochetes, and Chloroflexi. Alphaproteobacteria, Gammaproteobacteria, and Actinobacteria were commonly found in bacteria associated with S. abata by both RFLP and DGGE methods; however, overall bacterial community in the sponge differed depending on the analysis methods.

Identification of Beef Breed using DNA Marker of Coat Color Genes (모색 발현 유전자의 DNA Marker를 이용한 쇠고기 품종 판별)

  • Chung Eui-Ryong;Chung Ku-Young
    • Food Science of Animal Resources
    • /
    • v.24 no.4
    • /
    • pp.355-360
    • /
    • 2004
  • In Korean beef market, one of the major problems is mislabeling or fraudulent distribution of Holstein dairy meat or imported beef as domestic Hanwoo meat. Therefore, there has been a great need for a development of technology to identify beef breeds in meat and meat products. This study was carried out to develop the accurate and reliable method for the identification of beef breed using PCR-RFLP marker of MC1R, MGF and TYRPl genes affecting coat colors in cattle. A single base substitution (G\longrightarrowT transition) at the codon for amino acid position 104 of MC1R gene was identified between Hanwoo and Holstein and Angus breeds. The change at this position creates Msp I restriction site in Holstein and Angus, but not in Hanwoo. When the DNA amplified products (537 bp) was digested with Msp I, Hanwoo meat showed a single band of 537bp, while two fragments of 329bp and 208 bp were observed in Holstein meat and Angus breed, respectively. Thus, breed-specific RFLP marker in the MC1R gene can be used to distinguish between Hanwoo meat and Holstein and Angus meats. In the RFLP genotype of MGF gene, the frequency of r/r type was 75% in Manwoo, whereas the frequency of R/R was 80% in Hereford breed. Holstein and Angus breeds showed 100% for R/r type. Therefore, Hanwoo meat showed significant difference in the MGF genotype frequencies compared with those of Holstein meat and imported beef cattle breeds. However, TYRP1 gene showed the same genotype in all breeds examined. Thus, this TYRP1 gene can not be used as a molecular marker for breed identification. As a consequence, we suggest that RFLP markers of the MC1R and MGF coat color genes could be used as DNA marker for identification of Hanwoo meat from Holstein and imported meats.

Characterization and Sequence Analysis of a Lily Isolate of Cucumber mosaic virus from Lithium tsingtauense

  • Ryu, Ki-Hyun;Park, Hye-Won;Park, Jang-Kyung
    • The Plant Pathology Journal
    • /
    • v.18 no.2
    • /
    • pp.85-92
    • /
    • 2002
  • A new isolate of Cucumber mosaic virus (CMV), identified as Li-CMV was isolated from a diseased Korean native lily (Lithium tsingtauense Gilg). Biological and serological properties of Li-CMV were characterized, and reverse transcription-polymerase chain reaction (RT-PCR) analysis, restriction enzyme profiling of RT-PCR products, and nucleotide sequence analysis of RNA3 of the virus were performed in this study. Remarkable differences in symptoms between Li-CMV and ordinary CMV strains were found in tobacco plants and Datura stramonium. Li-CMV-infected tobacco plants (cv. Xanthi-nc and cv. Samsun) induced chlorotic ringspots on uninoculated upper leaves, and the symptom expression was delayed or faint whereas, ordinary CMV strains induced green mosaic symptoms on the plant. Systemic infections were observed on Nicotiana benthamiana with severe mosaic symptom. Restriction mapping analysis of RT-PCR products using MspI showed that Li-CMV belonged to CMV subgroup I. A full-length CDNA copy of RNA3 for the virus was amplified by RT-PCR, cloned, and its complete nucleotide sequence was determined. The RNA3 of Li-CMV was 2, 232 nucleotides long, and consisted of two open reading frames of 843 and 657 bases encoding 3a protein (movement protein) and coat protein, respectively. Results of this study indicate that Li-CMV is a novel strain and belongs to subgroup I of CMV in the genus Cucumovirus.

Methylation of O6-Methyl Guanine Methyltransferase Gene Promoter in Meningiomas - Comparison between Tumor Grades I, II, and III

  • Larijani, Leila;Madjd, Zahra;Samadikuchaksaraei, Ali;Younespour, Shima;Zham, Hanieh;Rakhshan, Azadeh;Mohammadi, Foruzan;Rahbari, Ali;Moradi, Afshin
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.1
    • /
    • pp.33-38
    • /
    • 2014
  • Background: Meningiomas are the second most common primary intracranial tumors after gliomas. Epigenetic biomarkers such as DNA methylation, which is found in many tumors and is thus important in tumorigenesis can help diagnose meningiomas and predict response to adjuvant chemotherapy. We investigated aberrant O6-methyl guanine methyltransferase (MGMT) methylation in meningiomas. Materials and Methods: Sixty-one patients were classified according to the WHO grading, and MGMT promoter methylation status was examined via the methylation-Specific PCR(MSP) method. Results: MGMT promoter methylation was found in 22.2% of grade I, 35% of grade I with atypical features, 36% of grade II, and 42.9% of grade III tumors. Conclusions: There was an increase, albeit not statistically significant, in MGMT methylation with a rise in the tumor grade. Higher methylation levels were also observed in the male gender.

Halotolerant Spore-Forming Gram-Positive Bacterial Diversity Associated with Blutaparon portulacoides (St. Hill.) Mears, a Pioneer Species in Brazilian Coastal Dunes

  • Barbosa Deyvison Clacino;Irene Von Der Weid;Vaisman Natalie;Seldin Lucy
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.2
    • /
    • pp.193-199
    • /
    • 2006
  • Halotolerant spore-forming Gram-positive bacteria were isolated from the root, rhizosphere, and non-rhizosphere soil of Blutaparon portulacoides. The different isolates were characterized genetically using an amplified ribosomal DNA restriction analysis (ARDRA), and phenotypically based on their colonial morphology, physiology, and nutritional requirements. Three different 16S rRNA gene-based genotypes were observed at a 100% similarity using the enzymes HinfI, MspI, and RsaI, and the phenotypic results also followed the ARDRA groupings. Selected strains, representing the different ARDRA groups, were analyzed by 16S rDNA sequencing, and members of the genera Halobaeillus, Virgibacillus, and Oceanobacillus were found. Two isolates showed low 16S rDNA sequence similarities with the closest related species of Halobacillus, indicating the presence of new species among the isolates. The majority of the strains isolated in this study seemed to belong to the species O. iheyensis and were compared using an AP-PCR to determine whether they had a clonal origin or not. Different patterns allowed the grouping of the strains according to Pearson's coefficient, and the resulting dendrogram revealed the formation of two main clusters, denoted as A and B. All the strains isolated from the soil were grouped into cluster A, whereas cluster B was exclusively composed of the strains associated with the B. portulacoides roots. This is the first report on the isolation and characterization of halotolerant spore-forming Gram-positive bacteria that coexist with B. portulacoides. As such, these new strains may be a potential source for the discovery of bioactive compounds with industrial value.