DOI QR코드

DOI QR Code

Seasonal Differences of Bacterial Communities Associated with the Marine Sponge, Hymeniacidon sinapium

주황해변해면(Hymeniacidon sinapium) 공생세균 군집의 계절적 차이

  • Received : 2012.12.14
  • Accepted : 2012.12.26
  • Published : 2012.12.31

Abstract

Seasonal differences of the cultivable bacterial communities associated with the marine sponge, Hymeniacidon sinapium, between spring and summer were analyzed through the Amplified Ribosomal DNA Restriction Analysis (ARDRA). For the cultivation of the bacterial isolates, modified Zobell and MA media were used. The 16S rDNA of individual strains were amplified and fragmented by using two restriction enzymes, HaeIII and MspI. As a result, 23 ARDRA types from the spring sponge and 28 types from the summer sponge were obtained. The partial sequencing result of 1 to 3 selected strains from each types showed over 94% similarities with the known species from the public database. The bacterial communities from the sponge, captured on spring, contained 4 phyla: Actinobacteria, Alphaproteobacteria, Gammaproteobacteria, and Firmicutes. There were 5 phyla observed from the bacterial communities associated with the sponge, captured on summer: Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria, Firmicutes, and Bacteroidetes. Gammaproteobacteria was predominant group in both spring and summer, accounted for 33.8% of total in spring and 67.4% in summer, showed increase pattern on summer. Because Firmicutes and Actinobacteria participated in 30.2% and 8.3% of the spring sponge while they represented only 6.9% and 0% of the summer sponge, both bacterial groups showed decrease drift on summer. Betaproteobacteria (4.7%) and Bacteroidetes (4.7%) were only observed on the sponge captured on summer. On the sponge, Hymeniacidon sinapium, more diverse bacterial communities were shown on summer than on spring, and even from the same sponge, there were seasonal differences.

ARDRA (amplified ribosomal DNA restriction analysis) 방법을 이용하여 주황해변해면(Hymeniacidon sinapium)의 배양 가능한 공생세균 군집에 대하여 봄과 여름의 계절에 따른 차이를 분석하였다. 공생세균의 배양은 변형된 Zobell 배지와 MA 배지를 사용하였다. 분리된 균주의 16S rDNA를 증폭하고 제한효소 HaeIII와 MspI을 이용하여 제한효소 type을 구별하였다. 그 결과 봄 해면인 경우 23개, 여름인 경우 28개의 ARDRA type을 구별할 수 있었다. 각 type 별로 1-3개의 분리균주를 선별하여 부분 염기서열 분석 결과, 알려진 세균 종과 94% 이상의 유사도를 나타내었다. 봄 해면으로부터 분리된 세균들은 Alphaproteobacteria, Gammaproteobacteria, Firmicutes, Actinobacteria, 4개의 문(phylum)에 속하였으며 여름 해면의 공생세균은 Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria, Firmicutes, Bacteroidetes, 5개의 문에 포함되었다. Gammaproteobacteria는 봄 해면에서 33.8%, 여름 해면에서 67.4%가 각각 관찰되어 두 계절에서 우점 하는 세균그룹으로 나타났으며 여름철에 증가하는 경향을 나타내었다. Firmicutes와 Actinobacteria의 경우 봄 해면에서 각각30.2%, 8.3%로 관찰된 반면 여름해면에서는 6.9%, 0%로 관찰되어 여름철에 감소하는 세균 그룹이었다. Betaproteobacteria(4.7%)와 Bacteroidetes (4.7%)는 여름 해면에서만 관찰되었다. H. sinapium 해면에서 봄철에 비해 여름철에 더 다양한 세균그룹을 발견할 수 있었으며 동일한 해면 종일지라도 계절에 따라 공생세균 군집에 차이를 나타냄을 알 수 있었다.

Keywords

References

  1. Anderson, S.A., Northcote, P.T., and Page, M.J. 2010. Spatial and temporal variability of the bacterial community in different chemotypes of the New Zealand marine sponge Mycale hentscheli. FEMS Microbiol. Ecol. 72, 328-342. https://doi.org/10.1111/j.1574-6941.2010.00869.x
  2. Buchan, A., Gonzalez, J.M., and Moran, M.A. 2005. Overview of the marine Roseobacter lineage. Appl. Environ. Microbiol. 71, 5665-5677. https://doi.org/10.1128/AEM.71.10.5665-5677.2005
  3. Cao, H., Cao, X., Guan, X., Xue, S., and Zhang, W. 2012. High temporal variability in bacterial community, silicatein and hsp70 expression during the annual life cycle of Hymeniacidon sinapium (Demospongiae) in China's Yellow Sea. Aquaculture 358-359, 262-273.
  4. Cho, H.H. and Park, J.S. 2009. Comparative analysis of the community of culturable bacteria associated with sponges, Spirastrella abata and Spirastrella panis by 16S rDNA-RFLP. Kor. J. Microbiol. 45, 155-162.
  5. Crapart, S., Fardeau, M.L., Cayol, J.L., Thomas, P., Sery, C., Ollivier, B., and Combet-Blanc, Y. 2007. Exiguobacterium profundum sp. nov., a moderately thermophilic, lactic acid-producing bacterium isolated from a deep-sea hydrothermal vent. Int. J. Syst. Evol. Microbiol. 57, 287-292. https://doi.org/10.1099/ijs.0.64639-0
  6. Erwin, P.M., Pita, L., López-Legentil, S., and Turon, X. 2012. Stability of sponge-associated bacteria over large seasonal shifts in temperature and irradiance. Appl. Environ. Microbiol. 78, 7358-7368. https://doi.org/10.1128/AEM.02035-12
  7. Fu, W., Sun, L., Zhang, X., and Zhang, W. 2006. Potential of the marine sponge Hymeniacidon perleve as a bioremediator of pathogenic bacteria in integrated aquaculture ecosystems. Biotechnol. Bioeng. 93, 1112-1122. https://doi.org/10.1002/bit.20823
  8. Fu, W., Wu, Y., Sun, L., and Zhang, W. 2007. Efficient bioremediation of total organic carbon (TOC) in integrated aquaculture system by marine sponge Hymeniacidon perleve. Biotechnol. Bioeng. 97, 1387-1397. https://doi.org/10.1002/bit.21352
  9. Inaba, K., Sato, H., Tsuda, M., and Kobayashi, J.I. 1998. Spongiacidins A−D, new bromopyrrole alkaloids from Hymeniacidon sponge. J. Nat. Prod. 61, 693-695. https://doi.org/10.1021/np970565h
  10. Jackson, S.A., Kennedy, J., Morrissey, J.P., O'Gara, F., and Dobson, A.D. 2012. Pyrosequencing reveals diverse and distinct sponge-specific microbial communities in sponges from a single geographical location in Irish waters. Microb. Ecol. 64, 105-116. https://doi.org/10.1007/s00248-011-0002-x
  11. Kennedy, J., Baker, P., Piper, C., Cotter, P.D., Walsh, M., Mooij, M.J., Bourke, M.B., Rea, M.C., O'Connor, P.M., Ross, R.P., and et al. 2009. Isolation and analysis of bacteria with antimicrobial activities from the marine sponge Haliclona simulans collected from Irish waters. Mar. Biotechnol. 11, 384-396. https://doi.org/10.1007/s10126-008-9154-1
  12. Kim, S.K. and Dewapriya, P. 2012. Bioactive compounds from marine sponges and their symbiotic microbes: a potential source of nutraceuticals. Adv. Food Nutr. Res. 65, 137-151. https://doi.org/10.1016/B978-0-12-416003-3.00008-1
  13. Kim, M.M., Mendis, E., Rajapakse, N., Lee, S.H., and Kim, S.K. 2009a. Effect of spongin derived from Hymeniacidon sinapium on bone mineralization. J. Biomed. Mater. Res. B Appl. Biomater. 90B, 540-546. https://doi.org/10.1002/jbm.b.31315
  14. Kim, M.K., Srinivasan, S., Kim, Y.J., and Yang, D.C. 2009b. Castellaniella ginsengisoli sp. nov., a beta-glucosidase-producing bacterium. Int. J. Syst. Evol. Microbiol. 59, 2191-2194. https://doi.org/10.1099/ijs.0.008300-0
  15. Li, Z., He, L., and Miao, X. 2008. Cultivable bacterial community from South China Sea sponge as revealed by DGGE fingerprinting and 16S rDNA phylogenetic analysis. Curr. Microbiol. 55, 465-472.
  16. Mayer, A.M., Aviles, E., and Rodriguez, A.D. 2012. Marine sponge Hymeniacidon sp. amphilectane metabolites potently inhibit rat brain microglia thromboxane B2 generation. Bioorg. Med. Chem. 20, 279-282 https://doi.org/10.1016/j.bmc.2011.10.086
  17. Nguyen, T.N. and Tepe, J.J. 2009. Preparation of hymenialdisine, analogues and their evaluation as kinase inhibitors. Curr. Med. Chem. 16, 3122-3143. https://doi.org/10.2174/092986709788803015
  18. Olson, J.B. and McCarthy, P.J. 2005. Associated bacterial communities of two deep-water sponges. Aquat. Microb. Ecol. 39, 47-55. https://doi.org/10.3354/ame039047
  19. Park, S.H., Kwon, K.K., Lee, D.S., and Lee, H.K. 2002. Morphological diversity of marine microorganisms on different media. J. Microbiol. 40, 161-165.
  20. Selvin, J. and Lipton, A.P. 2004. Biopotentials of secondary metabolites isolated from marine sponges. Hydrobiologia. 513, 231-234. https://doi.org/10.1023/B:hydr.0000018183.92410.21
  21. Sipkema, D., Schippers, K., Maalcke, W.J., Yang, Y., Salim, S., and Blanch, H.W. 2011. Multiple approaches to enhance the cultivability of bacteria associated with the marine sponge Haliclona (gellius) sp. Appl. Environ. Microbiol. 77, 2130-2140. https://doi.org/10.1128/AEM.01203-10
  22. Suzuki, M., Nakagawa, Y., Harayama, S., and Yamamoto, S. 2001. Phylogenetic analysis and taxonomic study of marine Cytophagalike bacteria: proposal for Tenacibaculum gen. nov. with Tenacibaculum maritimum comb. nov. and Tenacibaculum ovolyticum comb. nov., and description of Tenacibaculum mesophilum sp. nov. and Tenacibaculum amylolyticum sp. nov. Int. J. Syst. Evol. Microbiol. 51, 1639-1652. https://doi.org/10.1099/00207713-51-5-1639
  23. Tamaki, H., Sekiguchi, Y., Hanada, S., Nakamura, K., Nomura, N., Matsumura, M., and Kamagata, Y. 2005. Comparative analysis of bacterial diversity in freshwater sediment of a shallow eutrophiclake by molecular and improved cultivation-based techniques. Appl. Environ. Microbiol. 71, 2162-2169. https://doi.org/10.1128/AEM.71.4.2162-2169.2005
  24. Tamura, K., Dudley, J., Nei, M., and Kumar, S. 2007. MEGA 4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol. Biol. Evol. 24, 1596-1599. https://doi.org/10.1093/molbev/msm092
  25. Taylor, M.W., Hill, R., and Hentschel, U. 2011. Meeting report: 1st international symposium on sponge microbiology. Mar. Biotechnol. 13, 1057-1061. https://doi.org/10.1007/s10126-011-9397-0
  26. Thompson, J.D., Higgins, D.G., and Gibson, T.J. 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673-4680. https://doi.org/10.1093/nar/22.22.4673
  27. White, J.R., Patel, J., Ottesen, A., Arce, G., Blackwelder, P., and Lopez, J.V. 2012. Pyrosequencing of bacterial symbionts within Axinella corrugata sponges: diversity and seasonal variability. PLoS. 7, e38204. doi:10.1371/journal.pone.0038204.
  28. Xi, L., Ruan, J., and Huang, Y. 2012. Diversity and biosynthetic potential of culturable Actinomycetes associated with marine sponges in the China Seas. Int. J. Mol. Sci. 13, 5917-5932. https://doi.org/10.3390/ijms13055917
  29. Xue, L. and Zhang, W. 2009. Growth and survival of early juveniles of the marine sponge Hymeniacidon perlevis (Demospongiae) under controlled conditions. Mar. Biotechnol. 11, 640-649. https://doi.org/10.1007/s10126-009-9180-7
  30. Yoon, J.H., Kang, S.J., and Oh, T.K. 2005. Tenacibaculum lutimaris sp. nov., isolated from a tidal flat in the Yellow Sea, Korea. Int. J. Syst. Evol. Microbiol. 55, 793-798. https://doi.org/10.1099/ijs.0.63416-0
  31. Zhang, X., Zhang, W., Xue, L., Zhang, B., Jin, M., and Fu, W. 2010. Bioremediation of bacteria pollution using the marine sponge Hymeniacidon perlevis in the intensive mariculture water system of turbot Scophthalmus maximus. Biotechnol. Bioeng. 105, 59-68. https://doi.org/10.1002/bit.22522

Cited by

  1. Seasonal Differences of Cultivable Bacterial Communities Associated with the Marine Sponge, Petrosia corticata, Collected from Jeju Island vol.7, pp.2, 2015, https://doi.org/10.15433/ksmb.2015.7.2.042
  2. Bacterial diversity of the Marine Sponge, Halichondria panicea by ARDRA and DGGE vol.51, pp.4, 2015, https://doi.org/10.7845/kjm.2015.5069
  3. Identification of a Bioactive Compound, Violacein, from Microbulbifer sp. Isolated from a Marine Sponge Hymeniacidon sinapium on the West Coast of Korea vol.45, pp.2, 2012, https://doi.org/10.4014/mbl.1702.02002