• Title/Summary/Keyword: Moving system

Search Result 4,743, Processing Time 0.036 seconds

MATHEMATICAL MODELLING FOR THE AXIALLY MOVING MEMBRANE WITH INTERNAL TIME DELAY

  • Kim, Daewook
    • East Asian mathematical journal
    • /
    • v.37 no.1
    • /
    • pp.141-147
    • /
    • 2021
  • In [1], we studied the PDE system with time-varing delay. Time delay occurs due to loosening in a high-speed moving axially directed membrane (string, belt, or plate) at production. Our purpose in this work derives a mathematical model with internal time delay. First, we consider the physical phenomenon of axially moving membrane with respect to kinetic energy, potential energy and work done. By the energy conservation law in physics, we get the second order nonlinear PDE system with internal time delay.

Dynamic Response of a Beam Including the Mass Effect of the Moving Loads (이동 하중의 질량효과를 고려한 보의 동적응답)

  • 최교준;김용철
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.1
    • /
    • pp.61-68
    • /
    • 1991
  • The system such as railway bridge can be modelled as the restrained beam with intermediate supports. This kind of structures are subject to the moving load, which has a great effect on dynamic stresses and can cause sever motions, especially at high velocities. Therefore, to analyze the dynamic characteristics of the system due to the moving load is very important. In this paper, the governing equation of motion of a restrained beam subjected to the moving load is derived by using the Hamilton's principle. The orthogonal polynomial functions, which are trial functions and satisfying the geometric and dynamic boundary conditions, are obtained through simple procedure. The dynamic response of the system subjected to the moving loads is obtained by using the Galerkin's method and the numerical time integration technique. The numerical tests for various constraint, velocity and boundary conditions were preformed. Furthermore, the effects of mass of the moving load are studied in detail.

EFFICIENT MANAGEMENT OF VERY LARGE MOVING OBJECTS DATABASE

  • Lee, Seong-Ho;Lee, Jae-Ho;An, Kyoung-Hwan;Park, Jong-Hyun
    • Proceedings of the KSRS Conference
    • /
    • v.2
    • /
    • pp.725-727
    • /
    • 2006
  • The development of GIS and Location-Based Services requires a high-level database that will be able to allow real-time access to moving objects for spatial and temporal operations. MODB.MM is able to meet these requirements quite adequately, providing operations with the abilities of acquiring, storing, and querying large-scale moving objects. It enables a dynamic and diverse query mechanism, including searches by region, trajectory, and temporal location of a large number of moving objects that may change their locations with time variation. Furthermore, MODB.MM is designed to allow for performance upon main memory and the system supports the migration on out-of-date data from main memory to disk. We define the particular query for truncation of moving objects data and design two migration methods so as to operate the main memory moving objects database system and file-based location storage system with.

  • PDF

Dynamic Characteristics of Cantilever Pipe Conveying Fluid with Moving Mass Considering Nozzle Angle (노즐 경사각을 고려한 이동질량을 가진 유체이송 외팔 파이프의 동특성 해석)

  • 윤한익;손인수;김현수;조정래
    • Journal of Ocean Engineering and Technology
    • /
    • v.16 no.6
    • /
    • pp.18-24
    • /
    • 2002
  • The vibrational system in this study consists of a cantilever pipe conveying fluid, the moving mass upon it, and an attached tip mass. The equation of motion is derived by using the Lagrange equation. The influences of the velocity and the velocities of fluid flow in the pipe have been studied on the dynamic behavior of a cantilever pipe using a numerical method. While the moving mass moves upon the cantilever pipe, the velocity of fluid flow and the nozzle angle increase; as a result, the tip displacement of the cantilever pipe, conveying fluid, is decreased. After the moving mass passes over the cantilever pipe, the tip displacement of the pipe is influenced by the potential energy of the cantilever pipe and the deflection of the pipe; the effect is the result of the moving mass and gravity. As the velocity of fluid flow and nozzle angle increases, the natural frequency of he system is decreased at the second mode and third mode, but it is increased at the first mode. As the moving mass increases, the natural frequency of the system is decreased at all modes.

Structural damage and force identification under moving load

  • Zhu, Hongping;Mao, Ling;Weng, Shun;Xia, Yong
    • Structural Engineering and Mechanics
    • /
    • v.53 no.2
    • /
    • pp.261-276
    • /
    • 2015
  • Structural damage and moving load identification are the two aspects of structural system identification. However, they universally coexist in the damaged structures subject to unknown moving load. This paper proposed a dynamic response sensitivity-based model updating method to simultaneously identify the structural damage and moving force. The moving force which is equivalent as the nodal force of the structure can be expressed as a series of orthogonal polynomial. Based on the system Markov parameters by the state space method, the dynamic response and the dynamic response derivatives with respect to the force parameters and elemental variations are analytically derived. Afterwards, the damage and force parameters are obtained by minimizing the difference between measured and analytical response in the sensitivity-based updating procedure. A numerical example for a simply supported beam under the moving load is employed to verify the accuracy of the proposed method.

Moving Object Detection Robust to Sudden illumination Change using Modified Texture Information (개선된 텍스쳐 정보를 이용한 갑작스러운 조명 변화에 강인한 이동 물체 탐지)

  • O, Yoe-Han;Chang, Hyung-Jin;Kim, Soo-Wan;Choi, Jin-Young
    • Proceedings of the KIEE Conference
    • /
    • 2008.10b
    • /
    • pp.268-269
    • /
    • 2008
  • Moving object detection is a fundamental technique in visual surveillance. Robust technique to enhance performance of moving object detection is required for several bad conditions in real external circumtance. In case of sudden illumination change in outdoor condition, many objects are determined as moving object though they are not really moving, but just their illumination changes. This makes the detection result untrustworthy. In this paper, robust moving object detection to sudden illumination change using gaussian mixture background model and new texture information using background from the weighted sum of recent images is proposed.

  • PDF

Three-dimensional finite element modelling and dynamic response analysis of track-embankment-ground system subjected to high-speed train moving loads

  • Fu, Qiang;Wu, Yang
    • Geomechanics and Engineering
    • /
    • v.19 no.3
    • /
    • pp.241-254
    • /
    • 2019
  • A finite element approach is presented to examine ground vibration characteristics under various moving loads in a homogeneous half-space. Four loading modes including single load, double load, four-load, and twenty-load were simulated in a finite element analysis to observe their influence on ground vibrations. Four load moving speeds of 60, 80, 100, and 120 m/s were adopted to investigate the influence of train speed to the ground vibrations. The results demonstrated that the loading mode in a finite element analysis is reliable for train-induced vibration simulations. Additionally, a three-dimensional finite element model (3D FEM) was developed to investigate the dynamic responses of a track-ballast-embankment-ground system subjected to moving loads induced by high-speed trains. Results showed that vibration attenuations and breaks exist in the simulated wave fronts transiting through different medium materials. These tendencies are a result of the difference in the Rayleigh wave speeds of the medium materials relative to the speed of the moving train. The vibration waves induced by train loading were greatly influenced by the weakening effect of sloping surfaces on the ballast and embankment. Moreover, these tendencies were significant when the vibration waves are at medium and high frequency levels. The vibration waves reflected by the sloping surface were trapped and dissipated within the track-ballast-embankment-ground system. Thus, the vibration amplitude outside the embankment was significantly reduced.

A Moving Object Tracking System from a Moving Camera by Integration of Motion Estimation and Double Difference (BBME와 DD를 통합한 움직이는 카메라로부터의 이동물체 추적 시스템)

  • 설성욱;송진기;장지혜;이철헌;남기곤
    • Journal of KIISE:Software and Applications
    • /
    • v.31 no.2
    • /
    • pp.173-181
    • /
    • 2004
  • In this paper, we propose a system for automatic moving object detection and tracking in sequence images acquired from a moving camera. The proposed algorithm consists of moving object detection and its tracking. Moving object can be detected by integration of BBME and DD method We segment the detected object using histogram back projection, match it using histogram intersection, extract and track it using XY-projection. Computer simulation results have shown that the proposed algorithm is reliable and can successfully detect and track a moving object on image sequences obtained by a moving camera.

The Influence of Moving Masses on Natural Frequency of Cantilever Pipe Conveying Fluid (유체유동 외팔 파이프의 고유진동수에 미치는 이동질량들의 영향)

  • 윤한익;손인수;진종태;김현수
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.12 no.11
    • /
    • pp.840-846
    • /
    • 2002
  • The vibrational system of this study is consisted of a cantilever pipe conveying fluid, the moving masses upon it and an attached tip mass. The equation of motion is derived by using Lagrange equation. The influences of the velocity and the number of moving masses and the velocities of fluid flow in the pipe have been studied on the natural frequency of a cantilever pipe by numerical method. As the size and number of a moving mass increases, the natural frequency of cantilever pipe conveying fluid is decreased. When the first a moving mass Is located at the end of cantilever pipe, the increasing of the distance of moving masses make the natural frequency increase at first and third mode, but the frequency of second mode is decreased. The variation of natural frequency of the system is decreased due to increase of the number of a moving mass. The number and distance of moving masses effect more on the frequency of higher mode of vibration.

Tracking of Moving Object Based on Embedded System (임베디드 기반의 이동물체 추적)

  • Jung, Dae-Yung;Lee, Sang-Lak;Choi, Han-Go
    • Proceedings of the Korea Institute of Convergence Signal Processing
    • /
    • 2005.11a
    • /
    • pp.209-212
    • /
    • 2005
  • This paper describes detection and tracking of a moving object for unmanned visual surveillance. security systems. Using images obtained from camera it detects and tracks a moving object and displays bounding box enclosing the moving object. The algorithm for detection and tracking is tested using a personal computer, and then implemented on EMPOS II embedded system. Simulation results show that the tracking of a moving object based on embedded system is working well. However it needs to improve image acquisition time for real time implementation to apply security systems.

  • PDF