• Title/Summary/Keyword: Moving least squares method

Search Result 111, Processing Time 0.022 seconds

Wind fragility analysis of RC chimney with temperature effects by dual response surface method

  • Datta, Gaurav;Sahoo, Avinandan;Bhattacharjya, Soumya
    • Wind and Structures
    • /
    • v.31 no.1
    • /
    • pp.59-73
    • /
    • 2020
  • Wind fragility analysis (WFA) of concrete chimney is often executed disregarding temperature effects. But combined wind and temperature effect is the most critical limit state to define the safety of a chimney. Hence, in this study, WFA of a 70 m tall RC chimney for combined wind and temperature effects is explored. The wind force time-history is generated by spectral representation method. The safety of chimney is assessed considering limit states of stress failure in concrete and steel. A moving-least-squares method based dual response surface method (DRSM) procedure is proposed in WFA to alleviate huge computational time requirement by the conventional direct Monte Carlo simulation (MCS) approach. The DRSM captures the record-to-record variation of wind force time-histories and uncertainty in system parameters. The proposed DRSM approach yields fragility curves which are in close conformity with the most accurate direct MCS approach within substantially less computational time. In this regard, the error by the single-level RSM and least-squares method based DRSM can be easily noted. The WFA results indicate that over temperature difference of 150℃, the temperature stress is so pronounced that the probability of failure is very high even at 30 m/s wind speed. However, below 100℃, wind governs the design.

An Adaptive FLIP-Levelset Hybrid Method for Efficient Fluid Simulation (효율적인 유체 시뮬레이션을 위한 FLIP과 레벨셋의 적응형 혼합 기법)

  • Lim, Jae-Gwang;Kim, Bong-Jun;Hong, Jeong-Mo
    • Journal of the Korea Computer Graphics Society
    • /
    • v.19 no.3
    • /
    • pp.1-11
    • /
    • 2013
  • Fluid Implicit Particle (FLIP) method is used in Visual Effect(VFX) industries frequently because FLIP based simulation show high performance with good visual quality. However in large-scale fluid simulations, the efficiency of FLIP method is low because it requires many particles to represent large volume of water. In this papers, we propose a novel hybrid method of simulating fluids to supplement this drawback. To improve the performance of the FLIP method by reducing the number of particles, particles are deployed inside thin layers of the inner surface of water volume only. The coupling between less-disspative solutions of FLIP method and viscosity solution of level set method is achieved by introducing a new surface reconstruction method motivated by surface reconstruction method[1] and moving least squares(MLS) method[2]. Our hybrid method can generate high quality of water simulations efficiently with various multiscale features.

Dynamic Algorithm for Solid Problems using MLS Difference Method (MLS 차분법을 이용한 고체역학 문제의 동적해석)

  • Yoon, Young-Cheol;Kim, Kyeong-Hwan;Lee, Sang-Ho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.25 no.2
    • /
    • pp.139-148
    • /
    • 2012
  • The MLS(Moving Least Squares) Difference Method is a numerical scheme that combines the MLS method of Meshfree method and Taylor expansion involving not numerical quadrature or mesh structure but only nodes. This paper presents an dynamic algorithm of MLS difference method for solving transient solid mechanics problems. The developed algorithm performs time integration by using Newmark method and directly discretizes strong forms. It is very convenient to increase the order of Taylor polynomial because derivative approximations are obtained by the Taylor series expanded by MLS method without real differentiation. The accuracy and efficiency of the dynamic algorithm are verified through numerical experiments. Numerical results converge very well to the closed-form solutions and show less oscillation and periodic error than FEM(Finite Element Method).

Dynamic Analysis of MLS Difference Method using First Order Differential Approximation (1차 미분 근사를 이용한 MLS차분법의 동적해석)

  • Kim, Kyeong-Hwan;Yoon, Young-Cheol;Lee, Sang-Ho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.31 no.6
    • /
    • pp.331-337
    • /
    • 2018
  • This paper presents dynamic algorithm of the MLS(moving least squares) difference method using first order differential Approximation. The governing equations are only discretized by the first order MLS derivative approximation. The system equation consists of an assembly of the approximate function, so the shape of system equation is similar to FEM(finite element method). The CDM(central difference method) is used for time integration of dynamic equilibrium equation. The natural frequency analyses of the MLS difference method and FEM are performed, and two analysis results are compared. Also, the accuracy of the proposed numerical method is verified by displaying the dynamic analysis results together with the results by the existing second order differential approximation. In the process of assembling the first order MLS derivative approximation, the oscillation error was suppressed and the stress distribution was interpreted as relatively uniform.

An estimation method based on autocovariance in the simple linear regression model (단순 선형회귀 모형에서 자기공분산에 근거한 최적 추정 방법)

  • Park, Cheol-Yong
    • Journal of the Korean Data and Information Science Society
    • /
    • v.20 no.2
    • /
    • pp.251-260
    • /
    • 2009
  • In this study, we propose a new estimation method based on autocovariance for selecting optimal estimators of the regression coefficients in the simple linear regression model. Although this method does not seem to be intuitively attractive, these estimators are unbiased for the corresponding regression coefficients. When the exploratory variable takes the equally spaced values between 0 and 1, under mild conditions which are satisfied when errors follow an autoregressive moving average model, we show that these estimators have asymptotically the same distributions as the least squares estimators. Additionally, under the same conditions as before, we provide a self-contained proof that these estimators converge in probability to the corresponding regression coefficients.

  • PDF

Autocovariance based estimation in the linear regression model (선형회귀 모형에서 자기공분산 기반 추정)

  • Park, Cheol-Yong
    • Journal of the Korean Data and Information Science Society
    • /
    • v.22 no.5
    • /
    • pp.839-847
    • /
    • 2011
  • In this study, we derive an estimator based on autocovariance for the regression coefficients vector in the multiple linear regression model. This method is suggested by Park (2009), and although this method does not seem to be intuitively attractive, this estimator is unbiased for the regression coefficients vector. When the vectors of exploratory variables satisfy some regularity conditions, under mild conditions which are satisfied when errors are from autoregressive and moving average models, this estimator has asymptotically the same distribution as the least squares estimator and also converges in probability to the regression coefficients vector. Finally we provide a simulation study that the forementioned theoretical results hold for small sample cases.

A LOCALIZED GLOBAL DEFORMATION MODEL TO TRACK MYOCARDIAL MOTION USING ECHOCARDIOGRAPHY

  • Ahn, Chi Young
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.18 no.2
    • /
    • pp.181-192
    • /
    • 2014
  • In this paper, we propose a robust real-time myocardial border tracking algorithm for echocardiography. Commonly, after an initial contour of LV border is traced at one or two frame from the entire cardiac cycle, LV contour tracking is performed over the remaining frames. Among a variety of tracking techniques, optical flow method is the most widely used for motion estimation of moving objects. However, when echocardiography data is heavily corrupted in some local regions, the errors bring the tracking point out of the endocardial border, resulting in distorted LV contours. This shape distortion often occurs in practice since the data acquisition is affected by ultrasound artifacts, dropout or shadowing phenomena of cardiac walls. The proposed method deals with this shape distortion problem and reflects the motion realistic LV shape by applying global deformation modeled as affine transform partitively to the contour. We partition the tracking points on the contour into a few groups and determine each affine transform governing the motion of the partitioned contour points. To compute the coefficients of each affine transform, we use the least squares method with equality constraints that are given by the relationship between the coefficients and a few contour points showing good tracking results. Many real experiments show that the proposed method supports better performance than existing methods.

A Comparative Study of Approximation Techniques on Design Optimization of a FPSO Riser Support Structure (FPSO Riser 지지구조의 설계최적화에 대한 근사화 기법의 비교 연구)

  • Shim, Chun-Sik;Song, Chang-Yong
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.24 no.5
    • /
    • pp.543-551
    • /
    • 2011
  • The paper deals with the comparative study of design optimization based on various approximation techniques in strength design of riser support structure installed on floating production storage and offloading unit(FPSO) using offshore operation loading conditions. The design optimization problem is formulated such that structural member sizing variables are determined by minimizing the weight of riser support structure subject to the constraints of structural strength in terms of loading conditions. The approximation techniques used in the comparative study are response surface method based sequential approximate optimization(RBSAO), Kriging based sequential approximate optimization(KBSAO), and the enhanced moving least squares method(MLSM) based approximate optimization such as CF(constraint feasible)-MLSM and Post-MLSM. Commercial process integration and design optimization(PIDO) tools are employed for the applications of RBSAO and KBSAO. The enhanced MLSM based approximate optimization techniques are newly developed to ensure the constraint feasibility. In the context of numerical performances such as design solution and computational cost, the solution results from approximate techniques based design optimization are compared to actual non-approximate design optimization.

TDOA Based Moving Target Velocity Estimation in Sensor Network (센서네트워크 내에서 TDOA 측정치 기반의 이동 표적 속도 정보 추정)

  • Kim, Yong Hwi;Park, Min Soo;Park, Jin Bae;Yoon, Tae Sung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.3
    • /
    • pp.445-450
    • /
    • 2015
  • In the moving target problem, the velocity information of the moving target is very important as well as the high accuracy position information. To solve this problem, active researches are being conducted recently with combine the Time Difference of Arrival (TDOA) and Frequency Delay of Arrival(FDOA) measurements. However, since the FDOA measurement is utilizing the Doppler effect due to the relative velocity between the target source and the receiver sensor, it may be difficult to use the FDOA measurement if the moving target speed is not sufficiently fast. In this paper, we propose a method for estimating the position and the velocities of the target by using only the TDOA measurements for the low speed moving target in the indoor environment with sensor network. First, the target position and heading angle are obtained from the estimated positions of two attached transmitters on the target. Then, the target angular and linear velocities are also estimated. In addtion, we apply the Instrumental Variable (IV) technique to compensate the estimation error of the estimated target velocity. In simulation, the performance of the proposed algorithm is verified.

Comparative Study of Approximate Optimization Techniques in CAE-Based Structural Design (구조 최적설계를 위한 다양한 근사 최적화기법의 적용 및 비교에 관한 연구)

  • Song, Chang-Yong;Lee, Jong-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.11
    • /
    • pp.1603-1611
    • /
    • 2010
  • The comparative study of regression-model-based approximate optimization techniques used in the strength design of an automotive knuckle component that will be under bump and brake loading conditions is carried out. The design problem is formulated such that the cross-sectional sizing variables are determined by minimizing the weight of the knuckle component that is subjected to stresses, deformations, and vibration frequency constraints. The techniques used in the comparative study are sequential approximate optimization (SAO), sequential two-point diagonal quadratic approximate optimization (STDQAO), and approximate optimization based on enhanced moving least squares method (MLSM), such as CF (constraint feasible)-MLSM and Post-MLSM. Commercial process integration and design optimization (PIDO) tools are utilized for the application of SAO and STDQAO. The enhanced MLSM-based approximate optimization techniques are newly developed to ensure constraint feasibility. The results of the approximate optimization techniques are compared with those of actual non-approximate optimization to evaluate their numerical performances.