DOI QR코드

DOI QR Code

A LOCALIZED GLOBAL DEFORMATION MODEL TO TRACK MYOCARDIAL MOTION USING ECHOCARDIOGRAPHY

  • Ahn, Chi Young (Division of Computational Mathematics, National Institute for Mathematical Sciences)
  • Received : 2014.04.25
  • Accepted : 2014.05.21
  • Published : 2014.06.25

Abstract

In this paper, we propose a robust real-time myocardial border tracking algorithm for echocardiography. Commonly, after an initial contour of LV border is traced at one or two frame from the entire cardiac cycle, LV contour tracking is performed over the remaining frames. Among a variety of tracking techniques, optical flow method is the most widely used for motion estimation of moving objects. However, when echocardiography data is heavily corrupted in some local regions, the errors bring the tracking point out of the endocardial border, resulting in distorted LV contours. This shape distortion often occurs in practice since the data acquisition is affected by ultrasound artifacts, dropout or shadowing phenomena of cardiac walls. The proposed method deals with this shape distortion problem and reflects the motion realistic LV shape by applying global deformation modeled as affine transform partitively to the contour. We partition the tracking points on the contour into a few groups and determine each affine transform governing the motion of the partitioned contour points. To compute the coefficients of each affine transform, we use the least squares method with equality constraints that are given by the relationship between the coefficients and a few contour points showing good tracking results. Many real experiments show that the proposed method supports better performance than existing methods.

Acknowledgement

Supported by : National Research Foundation of Korea (NRF), National Institute for Mathematical Sciences(NIMS)

References

  1. V. Mor-Avi, L. Sugeng, L. Weinert, P. MacEneaney, E. G. Caiani, R. Koch, I. S. Salgo, R. M. Lang, Fast measurement of left ventricular mass with real-time three-dimensional echocardiography: comparison with magnetic resonance imaging, IEEE Transactions on Image Processing, 110(13) (2004), 1814-1818.
  2. F. Veronesi, C. Corsi, E. G. Caiani, A. Sarti, C. Lamberti, Tracking of left ventricular long axis from real-time three-dimensional echocardiography using optical flow techniques, IEEE Trans Inf Technol Biomed, 10(1) (2006), 174-181. https://doi.org/10.1109/TITB.2005.855535
  3. J. Hansegard, S. Urheim, K. Lunde, S. Malm, S. I. Rabben, Semi-automated quantification of left ventricular volumes and ejection fraction by real-time three-dimensional echocardiography, Cardiovasc Ultrasound, 7(18) (2009), 1-10. https://doi.org/10.1186/1476-7120-7-1
  4. K. Y. E. Leung, J. G. Bosch, Automated border detection in three-dimensional echocardiography: principles and promises, Eur J Echocardiogr, 11(2) (2010), 97-108. https://doi.org/10.1093/ejechocard/jeq005
  5. E. D. Angelini, A. F. Laine, S. Takuma, J. W. Holmes, S. Homma, LV Volume Quantification via Spatiotemporal Analysis of Real-Time 3-D Echocardiography, IEEE Trans Med Imaging, 20(6) (2001), 457-469. https://doi.org/10.1109/42.929612
  6. M. M. Nillesen, R. G. Lopata, I. H. Gerrits, L. Kapusta, H. J. Huisman, J. M. Thijssen, C. L. de Korte, Segmentation of the heart muscle in 3-D pediatric echocardiographic images, Ultrasound Med Biol, 33(9) (2007), 1453-1462. https://doi.org/10.1016/j.ultrasmedbio.2007.04.001
  7. O. I. Soliman, B. J. Krenning, M. L. Geleijnse, A. Nemes, J. G. Bosch, R. J. van Geuns, S.W. Kirschbaum, A. M. Anwar, T. W. Galema, W. B. Vletter, F. J. ten Cate, Quantification of left ventricular volumes and function in patients with cardiomyopathies by real-time three-dimensional echocardiography: a head-to-head comparison between two different semiautomated endocardial border detection algorithms, J Am Soc Echocardiogr, 20(9) (2007), 1042-1049. https://doi.org/10.1016/j.echo.2007.02.011
  8. E. O. Chukwu, E. Barasch, D. G. Mihalatos, A. Katz, J. Lachmann, J. Han, N. Reichek, A. S. Gopal, Relative importance of errors in left ventricular quantitation by two-dimensional echocardiography: insights from three-dimensional echocardiography and cardiac magnetic resonance imaging, J Am Soc Echocardiogr, 21(9), (2008), 990-997. https://doi.org/10.1016/j.echo.2008.07.009
  9. J. Hansegard, F. Orderud, S. I. Rabben, Real-time active shape models for segmentation of 3D cardiac ultrasound, Lect Notes Comput Sci, 4673, (2007), 157-164.
  10. F. Orderud, S. I. Rabben, Real-time 3D segmentation of the left ventricle using deformable subdivision surfaces, Proceedings of Computer Vision and Pattern Recognition, (2008) 1-8.
  11. M. Ma, M. van Stralen, J. H. Reiber, J. G. Bosch, B. P. Lelieveldt, Model driven quantification of left ventricular function from sparse single-beat 3D echocardiography, Med Imag Anal, 14(4) (2010), 582-593. https://doi.org/10.1016/j.media.2010.04.004
  12. P. Baraldi, A. Sarti, C. Lamberti, A. Prandini, F. Sgallari, Evaluation of differential optical flow techniques on synthesized echo images, IEEE Trans Biomed Eng, 43(3) (1996), 259-272. https://doi.org/10.1109/10.486283
  13. M. Suhling, M. Arigovindan, C. Jansen, P. Hunziker, M. Unser, Myocardial motion analysis from B-mode echocardiograms, IEEE Trans Image Process, 14(4), (2005), 525-536. https://doi.org/10.1109/TIP.2004.838709
  14. M. G. Linguraru, N. V. Vasilyev, G. R. Marx, W. Tworetzky, P. J. Del Nido, R. D. Howe, Fast block flow tracking of atrial septal defects in 4D echocardiography, Med Image Anal, 12(4) (2008), 397-412. https://doi.org/10.1016/j.media.2007.12.005
  15. Q. Duan, E. D. Angelini, S. L. Herz, C. M. Ingrassia, K. D. Costa, J. W. Holmes, S. Homma, A. F. Laine, Region-Based Endocardium Tracking on Real-Time Three-Dimensional Ultrasound, Ultrasound Med Biol, 35(2) (2009), 256-265. https://doi.org/10.1016/j.ultrasmedbio.2008.08.012
  16. K. Y. E. Leung, M. G. Danilouchkine, M. van Stralen, N. de Jong, A. F. van der Steen, J. G. Bosch, Left ventricular border tracking using cardiac motion models and optical flow, Ultrasound Med Biol, 37(4) (2011), 605-616. https://doi.org/10.1016/j.ultrasmedbio.2011.01.010
  17. J. L. Barron, D. J. Fleet, S. S. Beauchemin, Performance of optical flow techniques, Int J Comput Vision, 12(1) (1994), 43-77. https://doi.org/10.1007/BF01420984
  18. C. Y. Ahn, Robust Myocardial Motion Tracking for Echocardiography: Variational Framework Integrating Local-to-Global Deformation, Computational and Mathematical Methods in Medicine, 2013 (2013), 974027.
  19. A. A. Amini, R. W. Curwen, J. C. Gore, Snakes and splines for tracking non-rigid heart motion, Lect Notes Comput Sci, 1065 (1996), 249-261.
  20. M. Li, C. Kambhamettu, M. Stone, Nonrigid motion recovery for 3D surfaces, Image Vision Comput, 25(3) (2007), 250-261. https://doi.org/10.1016/j.imavis.2006.01.008
  21. B. Horn, B. Schunk, Determining optical flow, Artif Intell, 17(2) (1981), 185-203. https://doi.org/10.1016/0004-3702(81)90024-2
  22. B. Lucas, T. Kanade, An iterative image restoration technique with an application to stereo vision, in Proc. DARPA IU Workshop, (1981), 121-130.
  23. E. Brusseau, C. L. Korte, F. Mastik, J. Schaar, A. F. Steen, Fully automatic luminal contour segmentation in intracoronary ultrasound imaging - A statistical approach, IEEE Trans Med Imaging, 23(5) (2004), 554-566. https://doi.org/10.1109/TMI.2004.825602
  24. A. Sarti, C. Corsi, E. Mazzini, C. Lamberti, Maximum likelihood segmentation of ultrasound images with rayleigh distribution, IEEE Trans Ultrason Ferroelectr Freq Control, 52(6) (2005), 947-960. https://doi.org/10.1109/TUFFC.2005.1504017
  25. D. Kaplan, Q. Ma, On the statistical characteristics of log-compressed Rayleigh signals: theoretical formulation and experimental results, J Acoust Soc Am, 95(3) (1994), 1396-1400. https://doi.org/10.1121/1.408579
  26. G. Slabauh, G. Unal, M. Wels, T. Fang, B. Rao, Statistical region-based segmentation of ultrasound images, Ultrasound Med Biol, 35(5) (2009), 781-795. https://doi.org/10.1016/j.ultrasmedbio.2008.10.014
  27. D. P. Huttenlocher, G. A. Klanderman, W. J. Rucklidge, Comparing images using the Hausdorff distance, IEEE Trans Pattern Anal Machine Intell, 15(9) (1993), 850-863. https://doi.org/10.1109/34.232073
  28. E. Belogay, C. Cabrelli, U. Molter, R. Shonkwiler, Calculating the Hausdorff distance between curves, Information Processing Lett, 64 (1997), 17-22. https://doi.org/10.1016/S0020-0190(97)00140-3