• Title/Summary/Keyword: Moving Surface method

Search Result 390, Processing Time 0.026 seconds

Acoustic Analysis of Axial Fan using Kirchhoff Surface (Kirchhoff 면을 이용한 홴소음 해석)

  • Park, Yong-Min;Song, Woo-Seog;Lee, Seung-Bae
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.6
    • /
    • pp.701-713
    • /
    • 2003
  • The BEM is a highly efficient method in the sense of economical computation. However, boundary integration is not easy for the complex geometry and moving surface, e.g. a rotating blade. Thus, Kirchhoff surface is designed in an effort to overcome the difficulty resulting from complex boundary conditions. A Kirchhoff surface is a fictitious surface which envelopes acoustic sources of main concern. Acoustic sources may be distributed on each Kirchhoff surface element according to their acoustic characteristics. In this study, an axial fan is assumed to have unsteady loading noise as a dominant source. Dipole sources can be modeled to solve the FW-H equation. Acoustic field is then computed by determining Kirchhoff surface on which near-field is implemented, to analyze the effect of Kirchhoff surface on it. The optimal shape and the location of Kirchhoff surface are discussed by comparing with experimental data acquired in an anechoic chamber.

Development of Air-jet Washer for the Agaricus Bisporus (공기분사에 의한 양송이 버섯 세척기 개발)

  • Park, H.M.;Cho, K.H.;Hong, S.G.;Lee, S.H.
    • Journal of Biosystems Engineering
    • /
    • v.34 no.3
    • /
    • pp.167-174
    • /
    • 2009
  • This study was conducted to develop an agaricus bisporus washing machine which uses compressed air to remove foreign materials attached on the surface of agaricus bisporus. A prototype of the washing machine was constructed, and performance of removing foreign materials was tested. Research results are as follows: 1. Several transferring methods including PE roller rotation, brush roller rotation, PE screw rotation, vibration plate, and belt conveyor were evaluated. Roller, screw, and vibration methods caused damages on the surface of the products, but belt conveyor method caused the least damages. 2. For air jet, a stationary nozzle type and a rotational type were evaluated. The best air jet nozzle was the jet-type nozzle, and the rotational type was more effective than stationary type nozzle. 3. With the conveyer belt, box type moving method and the rotational air jet nozzle, the washing machine showed the best performance when higher than 5.4${\times}$105 Pa of air jet pressure and lower than 0.047 m/s of moving speed was used. Working performance of the system was 650 kg/h, and the damaging rate was 1.2 %.

Extraction of quasi-static component from vehicle-induced dynamic response using improved variational mode decomposition

  • Zhiwei Chen;Long Zhao;Yigui Zhou;Wen-Yu He;Wei-Xin Ren
    • Smart Structures and Systems
    • /
    • v.31 no.2
    • /
    • pp.155-169
    • /
    • 2023
  • The quasi-static component of the moving vehicle-induced dynamic response is promising in damage detection as it is sensitive to bridge damage but insensitive to environmental changes. However, accurate extraction of quasi-static component from the dynamic response is challenging especially when the vehicle velocity is high. This paper proposes an adaptive quasi-static component extraction method based on the modified variational mode decomposition (VMD) algorithm. Firstly the analytical solutions of the frequency components caused by road surface roughness, high-frequency dynamic components controlled by bridge natural frequency and quasi-static components in the vehicle-induced bridge response are derived. Then a modified VMD algorithm based on particle swarm algorithm (PSO) and mutual information entropy (MIE) criterion is proposed to adaptively extract the quasi-static components from the vehicle-induced bridge dynamic response. Numerical simulations and real bridge tests are conducted to demonstrate the feasibility of the proposed extraction method. The results indicate that the improved VMD algorithm could extract the quasi-static component of the vehicle-induced bridge dynamic response with high accuracy in the presence of the road surface roughness and measurement noise.

A New VOF-based Numerical Scheme for the Simulation of Fluid Flow with Free Surface(I)-New Free Surface Tracking Algorithm and Its Verification- (자유 표면이 존재하는 유체 유동 해석을 위한 VOF방법의 기반의 새로운 수치 기법(I)-새로운 자유 표면 추적 알고리즘 및 검증-)

  • Kim, Min-Su;Sin, Su-Ho;Lee, U-Il
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.12
    • /
    • pp.1555-1569
    • /
    • 2000
  • Numerical simulation of fluid flow with moving free surface has been carried out. For the free surface flow, a VOF(Volume of Fluid)-based algorithm utilizing a fixed grid system has been investigated. In order to reduce numerical smearing at the free surface represented on a fixed grid system, a new free surface tracking algorithm based on the donor-acceptor scheme has been presented. Novel features of the proposed algorithm are characterized as two numerical tools; the orientation vector to represent the free surface orientation in each cell and the baby-cell to determine the fluid volume flux at each cell boundary. The proposed algorithm can be easily implemented in any irregular non-uniform grid systems that are usual in finite element method (FEM). Moreover, the proposed algorithm can be extended and applied to the 3-D free surface flow problem without additional efforts. For computation of unsteady incompressible flow, a finite element approximation based on the explicit fractional step method has been adopted. In addition, the SUPG(streamline upwind/Petrov-Galerkin) method has been implemented to deal with convection dominated flows. Combination of the proposed free surface tracking scheme and explicit fractional step formulation resulted in an efficient solution algorithm. Validity of the present solution algorithm was demonstrated from its application to the broken dam and the solitary wave propagation problems.

A study of the Modeling of Paramenters in End-Mill System (End - Mill 절삭계의 파라메터 모델링에 관한 연구)

  • 백대균;김희술
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.173-178
    • /
    • 1995
  • This paper presents a new method to obtain parameters of end-mill cutting system. For high speed milling and precision surface finish, we have to predict the deflection of tool and the critical depth of cut. The cutting system can be modeled to a vibratory system to obtain the deflection of tooll and the critical depth of cut. A new method of the modeling of one degree of freedom system was developed using bisection method, ARMA(Autoregressive Moving average) and impact test.

  • PDF

A Simple Volume Tracking Method For Compressible Two-Phase Flow

  • SHYUE KEH-MING
    • Journal of The Korean Astronomical Society
    • /
    • v.34 no.4
    • /
    • pp.237-241
    • /
    • 2001
  • Our goal is to present a simple volume-of-fluid type interface-tracking algorithm to compressible two-phase flow in two space dimensions. The algorithm uses a uniform underlying Cartesian grid with some cells cut by the tracked interfaces into two subcells. A volume-moving procedure that consists of two basic steps: (1) the update of volume fractions in each grid cell at the end of the time step, and (2) the reconstruction of interfaces from discrete set of volume fractions, is employed to follow the dynamical behavior of the interface motion. As in the previous work with a surface-tracking procedure for general front tracking (LeVeque & Shyue 1995, 1996), a high resolution finite volume method is then applied on the resulting slightly nonuniform grid to update all the cell values, while the stability of the method is maintained by using a large time step wave propagation approach even in the presence of small cells and the use of a time step with respect to the uniform grid cells. A sample preliminary numerical result for an underwater explosion problem is shown to demonstrate the feasibility of the algorithm for practical problems.

  • PDF

Design optimization of Single-Phase induction motor Using Response Surface Method (반응표면법을 이용한 단상유도모터의 최적설계)

  • Shim, Ho-Kyoung;Kang, Je-Nam;Kim, Chwa-Il;Wang, Se-Myung;Kim, Jong-Bong
    • Proceedings of the KIEE Conference
    • /
    • 2003.07b
    • /
    • pp.681-683
    • /
    • 2003
  • The response surface method (RSM) became a popular meta modeling technique, but it always contains the approximation error. Instead of the conventional RSM, the moving least squares method (MLSM) was used to get more accurate models. The characteristics of a single-phase induction motor for the reciprocal compressor are analyzed by using the lumped method Program (LMP). The proposed method is applied to a single-phase induction motor for increasing the efficiency.

  • PDF

Theoretical and Experimental Study on the, Dynamic Behavior of Continuous Bridge having Irregular Surface under-Moving Load (불규칙한 노면(路面)을 주행하는 이동하중에 의한 연속교의 동적거동에 관한 이론 및 실험적 연구)

  • Chang, Sung Pil;Yhim, Sung Soon;Jo, Sir Kyung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.9 no.3
    • /
    • pp.21-30
    • /
    • 1989
  • In this study, the dynamic behavior of a continuous bridge under moving load is studied considering roughness of the road surface. Vehicle model includes the spring effects of axes, and due to these effects, equations of motions for the vehicle and bridge are derived in coupled form. And then iteration method is used to solve the equations. In experimental study a bridge model is constructed considering the similarity rule in order that the model exhibits dynamic behavior similar to that of prototype. Three types of roughness such as uneven random roughness, uplift on the approach and piece-wise constant roughness are used to describe road roughness. Through the numerical analysis and experiments, the effects of surface roughness, sprung mass, and velocity on the dynamic behavior of the bridge are examined.

  • PDF

The Effect of an Internal Damping on the Stability of Machine Tool Engineers Subjected to Dry Friction Force (내부감쇠가 건성마찰력을 받는 공작기계의 안정성에 미치는 효과)

  • 고준빈
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.13 no.2
    • /
    • pp.112-119
    • /
    • 2004
  • This paper discussed on the effect of an internal damping on the stability of an elastic material subjected to dry friction force. Dry friction forces act tangentially at the contact surface between a moving belt and elastic material. The elastic material on a belt moving is modeled for simplicity into a cantilevered beam subjected to distributed follower force. In the analysis, the discretized equations derived according to finite element method are used. The impulse response of the beam are studied by the mode superposition method to observe the growth rate of the motion. It is found that the internal damping in cantilevered beam subjected to distributed follower force may act destabilizing.

3차원 표면효과익의 자유표면 효과에 관한 수치연구

  • Gwak, Seung-Hyeon
    • Journal of Ocean Engineering and Technology
    • /
    • v.12 no.2 s.28
    • /
    • pp.79-86
    • /
    • 1998
  • A three-dimensional WIG (Wing In Ground effect) moving above free surface is numerically studied by means of finite difference techniques. The air flow field around the WIG is analyzed by MAC (Marker & Cell) method, and interactions between WIG and the free surface are appeared as the variation of pressure distribution acting on the free surface. To analyze the wavemaking phenomena by those pressure distributions, the NS (Navier-Stokes) solver is employed in which nonlinearities of the free surface conditions can be included. Through the numerical simulation, Cp values and lift/drag ratio are carefully reviewed by changing the height/chord ratio. The section shape of model is NACA0012 with the span/chord ratio of 3.0. Through computational results, it is confirmed that the effect of free surface is small enough to treat it as a rigid wavy wall.

  • PDF