• 제목/요약/키워드: Moving Load analysis

검색결과 286건 처리시간 0.027초

Evolving live load criteria in bridge design code guidelines - A case study of India based on IRC 6

  • Karthik, P.;Sharma, Shashi Kant;Akbar, M. Abdul
    • Structural Monitoring and Maintenance
    • /
    • 제9권1호
    • /
    • pp.43-57
    • /
    • 2022
  • One of the instances which demand structural engineer's greatest attention and upgradation is the changing live load requirement in bridge design code. The challenge increases in developing countries as the pace of infrastructural growth is being catered by the respective country codes with bigger and heavier vehicles to be considered in the design. This paper presents the case study of India where Indian Roads Congress (IRC) codes in its revised version from 2014 to 2017 introduced massive Special vehicle (SV) around 40 m long and weighing 3850 kN to be considered in the design of road bridges. The code does not specify the minimum distance between successive special vehicles unlike other loading classes and hence the consequences of it form the motivation for this study. The effect of SV in comparison with Class 70R, Class AA, Class A, and Class B loading is studied based on the maximum bending moment with moving load applied in Autodesk Robot Structural Analysis. The spans considered in the analysis varied from 10 m to 1991 m corresponding to the span of Akashi Kaikyo Bridge (longest bridge span in the world). A total of 182 analyses for 7 types of vehicles (class B, class A, class 70R tracked, class 70R wheeled, class AA tracked, AA wheeled, and Special vehicle) on 26 different span lengths is carried out. The span corresponding to other vehicles which would equal the bending moment of a single SV is presented along with a comparison relative to Standard Uniformly Distributed Load. Further, the results are presented by introducing a new parameter named Intensity Factor which is proven to relate the effect of axle spacing of vehicle on the normalized bending moment developed.

Identification of beam crack using the dynamic response of a moving spring-mass unit

  • An, Ning;Xia, He;Zhan, Jiawang
    • Interaction and multiscale mechanics
    • /
    • 제3권4호
    • /
    • pp.321-331
    • /
    • 2010
  • A new technique is proposed for bridge structural damage detection based on spatial wavelet analysis of the time history obtained from vehicle body moving over the bridge, which is different from traditional detection techniques based on the bridge response. A simply-supported Bernoulli-Euler beam subjected to a moving spring-mass unit is established, with the crack in the beam simulated by modeling the cracked section as a rotational spring connecting two undamaged beam segments, and the equations of motion for the system is derived. By using the transfer matrix method, the natural frequencies and mode shapes of the cracked beam are determined. The responses of the beam and the moving spring-mass unit are obtained by modal decomposition theory. The continuous wavelet transform is calculated on the displacement time histories of the sprung-mass. The case study result shows that the damage location can be accurately determined and the method is effective.

신형식 V형 거더 교량의 동적안정석 해석 (Dynamic Analysis of New-type Precast V-girder Bridge)

  • 조정래;김영진;양연종;구자갑
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2011년도 정기총회 및 추계학술대회 논문집
    • /
    • pp.1536-1541
    • /
    • 2011
  • Simple girder bridges are more economical than commonly used PSC box girder bridges in high-speed railway construction, if they secure the riding stability. In this study, the dynamic behavior and riding stability of the newly developed precast V-girder bridge are analyzed. The dynamic moving load analysis is used including two train load case : the KTX train and freight train.

  • PDF

칩마운트 (SMD) 장비의 동하중(動荷重) 발생특성에 관한 실험적 연구 (An Experimental Study on the Dynamic Load Characteristics of Surface Mount Device(SMD))

  • 백재호;이홍기;김강부
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2000년도 춘계학술대회논문집
    • /
    • pp.1913-1917
    • /
    • 2000
  • SMD Equipment convey an electronic parts at high speed, then assemble parts into a circuit board, and it develop a long time-duration dynamic force to be caused by moving mass. Vibration problem to be caused by SMD Equipment have an effect on micro-meter level's precision production process, directly, and dynamic stability of building. In the cause of quantitatively access about its vibration problem, input information(or data) of structure dynamic analysis need accuracy information of dynamic load. Determination of Dynamic load is various kinds of method using experimental and theory. In this paper, we got dynamic load using direct measurement method. We expect that an study on the dynamic load characteristic of SMD can be used to Equipment development of low level vibration and basis information of structure dynamic analysis.

  • PDF

Efficient wind fragility analysis of RC high rise building through metamodelling

  • Bhandari, Apurva;Datta, Gaurav;Bhattacharjya, Soumya
    • Wind and Structures
    • /
    • 제27권3호
    • /
    • pp.199-211
    • /
    • 2018
  • This paper deals with wind fragility and risk analysis of high rise buildings subjected to stochastic wind load. Conventionally, such problems are dealt in full Monte Carlo Simulation framework, which requires extensive computational time. Thus, to make the procedure computationally efficient, application of metamodelling technique in fragility analysis is explored in the present study. Since, accuracy by the conventional Least Squares Method (LSM) based metamodelling is often challenged, an efficient Moving Least Squares Method based adaptive metamodelling technique is proposed for wind fragility analysis. In doing so, artificial time history of wind load is generated by three wind field models: i.e., a simple one based on alongwind component of wind speed; a more detailed one considering coherence and wind directionality effect, and a third one considering nonstationary effect of mean wind. The results show that the proposed approach is more accurate than the conventional LSM based metamodelling approach when compared to full simulation approach as reference. At the same time, the proposed approach drastically reduces computational time in comparison to the full simulation approach. The results by the three wind field models are compared. The importance of non-linear structural analysis in fragility evaluation has been also demonstrated.

전단변형효과를 고려한 현수교의 교량-차량 상호작용 해석 (Bridge-Vehicle interaction Analysis of Suspension Bridges Considering the Effects of the Shear Deformation)

  • 김문영;임명훈;권순덕;김호경
    • 한국지진공학회논문집
    • /
    • 제8권6호통권40호
    • /
    • pp.1-11
    • /
    • 2004
  • 이전의 연구(1)에서는 해석적 및 수치적 방법을 사용하여 전단변형 및 회전관성효과를 고려하는 현수교의 수직진동에 대하여 유한요소법을 이용하여 이동하중 해석을 수행하였다. 본 연구에서는 전단변형 및 회전관성 효과가 고려된 Hermitian 다항식을 사용하는 현수교요소를 이용하여 현수교의 수직진동에 대한 고유치 해석을 수행하고 이를 이용한 현수교요소와 차량 및 열차와의 상호작용을 고려한 운동방정식을 유도한다. 이와 같이 모드중첩법을 이용하여 유도된 운동방정식을 수치적분방법으로 Newmark $\beta$ Method를 사용하여 동적해석을 수행하였다.

이동질량을 고려한 단순지지된 교량의 진동수 및 공진현상 분석 (The Effect of Moving Mass on Resonance Phenomenon and Natural Frequency of a Simply Supported Beam)

  • 민동주;정명락;박성민;김문영
    • 한국소음진동공학회논문집
    • /
    • 제26권1호
    • /
    • pp.27-38
    • /
    • 2016
  • The purpose of this study is to investigate the influence of moving mass on the vibration characteristics and the dynamic response of the simply supported beam. The three types of the moving mass(moving load, unsprung mass, and sprung mass) are applied to the vehicle-bridge interaction analysis. The numerical analyses are then conducted to evaluate the effect of the mass, spring and damper properties of the moving mass on natural frequencies and dynamic responses of the simply supported beam. Particularly, in the case of the sprung mass, variations of the natural frequency of simply supported beam are explored depending on the position of the moving mass and the frequency ratio of the moving mass and the beam. Finally the parametric studies on the resonance phenomena are performed with changing mass, spring and damper parameters through the dynamic interaction analyses.

로드셀을 이용한 밀링 가공시의 절삭력 측정시스템 (Cutting Force Measuring System Using the Load Cell for a Milling Process)

  • 강은구;박성준;이상조;권혁동
    • 한국정밀공학회지
    • /
    • 제18권6호
    • /
    • pp.133-140
    • /
    • 2001
  • This paper suggests another system for a cutting force measuring tool in a milling process. Generally, tool dynamometer is taken into account for the most appropriate cutting force measuring tool in the analysis of cutting mechanism. However, high price and limited space make it difficult to be in-situ system for controllable milling process. Although an alternative method using AC current of servo-motor has been suggested, it is unsuitable for cutting force control because of small upper frequency limit and noise. The cutting force measuring system is composed of two load cells placed between the moving table bracket and the nut flange part of ballscrew. It has many advantages such as low cost and wide range measurement than tool dynamometer because of the built-in moving table and the low cost load cell. The static and dynamic model of the measuring system using imbeded load cell is introduced. Various Experiments are carried out to validate both models. By comparing the cutting forces from a series of end milling experiments on the tool dynamometer and the system developed in this paper, the accuracy of the cutting force measuring system is verified. Upper frequency limit is measured by the experiment of dynamic characteristics.

  • PDF

다중회귀모형을 이용한 104주 주 최대 전력수요예측 (Weekly Maximum Electric Load Forecasting Method for 104 Weeks Using Multiple Regression Models)

  • 정현우;김시연;송경빈
    • 전기학회논문지
    • /
    • 제63권9호
    • /
    • pp.1186-1191
    • /
    • 2014
  • Weekly and monthly electric load forecasting are essential for the generator maintenance plan and the systematic operation of the electric power reserve. This paper proposes the weekly maximum electric load forecasting model for 104 weeks with the multiple regression model. Input variables of the multiple regression model are temperatures and GDP that are highly correlated with electric loads. The weekly variable is added as input variable to improve the accuracy of electric load forecasting. Test results show that the proposed algorithm improves the accuracy of electric load forecasting over the seasonal autoregressive integrated moving average model. We expect that the proposed algorithm can contribute to the systematic operation of the power system by improving the accuracy of the electric load forecasting.