인터넷 기술과 소셜 미디어의 빠른 성장으로 인하여, 구조화되지 않은 문서 표현도 다양한 응용 프로그램에 사용할 수 있게 마이닝 기술이 발전되었다. 그 중 감성분석은 제품이나 서비스에 내재된 사용자의 감성을 탐지할 수 있는 분석방법이기 때문에 지난 몇 년 동안 많은 관심을 받아왔다. 감성분석에서는 주로 텍스트 데이터를 이용하여 사람들의 감성을 사전 정의된 긍정 및 부정의 범주를 할당하여 분석하며, 이때 사전 정의된 레이블을 이용하기 때문에 다양한 방향으로 연구가 진행되고 있다. 초기의 감성분석 연구에서는 쇼핑몰 상품의 리뷰 중심으로 진행되었지만, 최근에는 블로그, 뉴스기사, 날씨 예보, 영화 리뷰, SNS, 주식시장의 동향 등 다양한 분야에 적용되고 있다. 많은 선행연구들이 진행되어 왔으나 대부분 전통적인 단일 기계학습기법에 의존한 감성분류를 시도하였기에 분류 정확도 면에서 한계점이 있었다. 본 연구에서는 전통적인 기계학습기법 대신 대용량 데이터의 처리에 우수한 성능을 보이는 딥러닝 기법과 딥러닝 중 CNN과 LSTM의 조합모델을 이용하여 감성분석의 분류 정확도를 개선하고자 한다. 본 연구에서는 대표적인 영화 리뷰 데이터셋인 IMDB의 리뷰 데이터 셋을 이용하여, 감성분석의 극성분석을 긍정 및 부정으로 범주를 분류하고, 딥러닝과 제안하는 조합모델을 활용하여 극성분석의 예측 정확도를 개선하는 것을 목적으로 한다. 이 과정에서 여러 매개 변수가 존재하기 때문에 그 수치와 정밀도의 관계에 대해 고찰하여 최적의 조합을 찾아 정확도 등 감성분석의 성능 개선을 시도한다. 연구 결과, 딥러닝 기반의 분류 모형이 좋은 분류성과를 보였으며, 특히 본 연구에서 제안하는 CNN-LSTM 조합모델의 성과가 가장 우수한 것으로 나타났다.
본 논문은 승객 위치정보 기반의 지하철 분산대피 안내 시스템을 제안하고자 한다. 최근 지하철 역사는 지하철 승강장 역할 뿐만 아니라, 환승, 쇼핑몰, 영화관 등의 다양한 편의 시설과 결합하여 대형화, 복잡화 되어 가고 있다. 이러한 지하철 역사의 복잡도 증가에 비해서 비상시를 대비한 대피경로, 대피안내 등의 대비체계는 부족한 실정이다. 이를 해결하기 위하여 현재 지하철에 설치되어 있는 Access Point(AP)와 실제 통계 자료를 이용하여 지하철 각 객차의 전체 승객 수를 추정하고, 추정된 승객 수와 지하철 역사의 출구 정보를 기반으로 각 객차의 승객 대피 경로를 방향 지시등과 스마트폰의 Push 알람을 통해 제공함으로써, 비상 시 가장 위험한 지하철 승객의 신속하고 안전한 대피시스템을 제안하였다. OpenWrt 임베디드 OS가 설치된 AP를 이용하여 접속자 수를 추정하는 실험을 수행하였으며, 시뮬레이션을 통해 승객 수를 추정한 결과 신뢰구간 파라미터 $1{\sigma}$, $2{\sigma}$, $3{\sigma}$에서 15%, 17% 그리고 23%의 평균 에러율을 갖는 것을 확인하였다. 이를 통해 본 시스템의 가능성을 확인하였다.
Forecasting of box office performance after a film release is very important, from the viewpoint of increase profitability by reducing the production cost and the marketing cost. Analysis of psychological factors such as word-of-mouth and expert assessment is essential, but hard to perform due to the difficulties of data collection. Information technology such as web crawling and text mining can help to overcome this situation. For effective text mining, categorization of objects is required. In this perspective, the objective of this study is to provide a framework for classifying films according to their characteristics. Data including psychological factors are collected from Web sites using the web crawling. A clustering analysis is conducted to classify films and a series of one-way ANOVA analysis are conducted to statistically verify the differences of characteristics among groups. The result of the cluster analysis based on the review and revenues shows that the films can be categorized into four distinct groups and the differences of characteristics are statistically significant. The first group is high sales of the box office and the number of clicks on reviews is higher than other groups. The characteristic of the second group is similar with the 1st group, while the length of review is longer and the box office sales are not good. The third group's audiences prefer to documentaries and animations and the number of comments and interests are significantly lower than other groups. The last group prefer to criminal, thriller and suspense genre. Correspondence analysis is also conducted to match the groups and intrinsic characteristics of films such as genre, movie rating and nation.
모션그래픽이라는 분야는 그 역사가 오래되지 않았다. 최근 영상디자인이 부각되고 있는 것은 세계적인 추세이다. 이러한 세계적 흐름은 영화, 광고, 전시장 영상, 웹, 모바일, 게임영상 및 뉴미디어까지 그 영향을 미치고 있다. 또한 컴퓨터의 새로운 기술이 발달하면서 영상콘테츠의 VFX 분야가 급격하게 변화되고 있다. 이러한 제작기술은 실사와 C.G의 합성기법으로 가상과 허구의 개념을 초월함과 동시에 매치무빙 기술을 이용하여 그래픽과 현실공간에 사실적인 표현방법을 극대화하고 있다. 매치무빙 기술은 실사와 그래픽이 공존하기 위하서 실사카메라와 가상카메라의 합성을 정교하게 매칭하는 기술이다. 본 논문은 입체적 공간에서 매치무빙 기법을 활용하여 실사카메라의 움직임을 3D Layer 방법으로 이어받아 새로운 디자인과 결합된 모션그래픽 영상제작방법을 제안한다.
Recently XML (eXtensible Markup Language) is becoming the standard for exchanging the documents on the web. And as the amount of information is increasing because of the development of the technique in the Internet, semantic web is becoming to appear for more exact result of information retrieval than the existing one on the web. Ontology which is the basis of the semantic web provides the basic knowledge system to express a particular knowledge. So it can show the exact result of the information retrieval. Ontology defines the particular concepts and the relationships between the concepts about specific domain and it has the hierarchy similar to the taxonomy. In this paper, we propose the generation of semi-automatic ontology based on XML documents that are interesting to many researchers as the means of knowledge expression. To construct the ontology in a particular domain, we suggest the algorithm to determine the domain. So we determined that the domain of ontology is to extract the information of movie on the web. And we used the generalized association rules, one of data mining methods, to generate the ontology, using the tag and contents of XML documents. And XTM (XML Topic Maps), ISO Standard, is used to construct the ontology as an ontology language. The advantage of this method is that because we construct the ontology based on the terms frequently used documents related in the domain, it is useful to query and retrieve the related domain.
본 논문에서는 저전압 저전력 시스템에 응용 가능한 CMOS 4상한 아날로그 멀티플라이어를 제안하였다. 제안된 멀티플라이어는 저전압에서 동작이 용이하며 아날로그 회로를 설계하는데 자주 이용되는 LV(Low-Voltage) 상보형 트랜지스터 방식의 특성을 이용하였다. LV 상보형 구조는 등가 문턱전압을 감소시킴으로서 회로의 동작전압을 감소시킬 수 있는 특징이 있다. 설계된 회로의 특성은 2V 공급전압하에서 0.6㎛ CMOS 공정파라미터를 갖는 HSPICE 시뮬레이션을 통하여 측정되었다. 이때 ±0.5V까지의 입력선형 범위내에서 선형성에 대한 오차는 1%미만이었다. 또한 -3㏈ 점에서의 대역폭은 290㎒, 그리고 전력소모는 373㎼값을 나타내었다.
필름 복원은 오래된 필름에서 손상된 영역을 검출하고 복원하는 것으로 최근 고화질의 멀티미디어 서비스에 대한 요구가 급증함에 따라 많은 연구자들로부터 관심을 받고 있다. 여러 손상요인 중 가장 빈번하게 나타나는 요인은 스크래치다. 따라서 본 논문에서는 모든 종류의 스크래치를 검출하고 이를 복원함으로써 자동으로 스크래치를 제거할 수 있는 시스템을 제안한다. 제안한 시스템은 다양한 종류의 스크래치를 제거하기 위하여 스크래치의 공간 정보를 이용한다.: 1) 스크래치는 주변 화소에 비해 밝거나 어두운 밝기 값을 가진다. 2) 대부분의 스크래치는 세로의 가늘고 긴 직선 형태로 나타난다. 제안한 시스템은 스크래치 검출과 스크래치 복원으로 구성된다. 다양한 종류의 스크래치들은 신경망 기반의 텍스처 분류기와 모폴로지 기반의 형태필터링을 통해 검출되며, 검출된 손상 영역은 양선형 보간법을 이용하여 복원된다. 제안한 방법의 효율성을 검증하기 위하여 모든 종류의 스크래치에 대해 실험하였고, 실험 결과는 제안된 방법이 다양한 종류의 스크래치를 강건하고 효율적으로 제거할 수 있음을 보여준다.
데이터의 양이 기하급수적으로 증가함에 따라 추천 시스템(recommender system)은 영화, 도서, 음악 등 다양한 산업에서 관심을 받고 있고 연구 대상이 되고 있다. 추천시스템은 사용자들의 과거 선호도 및 클릭스트림(click stream)을 바탕으로 사용자에게 적절한 아이템을 제안하는 것을 목적으로 한다. 대표적인 예로 넷플릭스의 영화 추천 시스템, 아마존의 도서 추천 시스템 등이 있다. 기존의 선행 연구는 협업적 여과, 내용 기반 추천, 혼합 방식의 3가지 방식으로 크게 분류할 수 있다. 하지만 기존의 추천 시스템은 희소성(sparsity), 콜드스타트(cold start), 확장성(scalability) 문제 등의 단점들이 있다. 이러한 단점들을 개선하고 보다 정확도가 높은 추천 시스템을 개발하기 위해 실제 온라인 기업의 상품구매 데이터를 이용해 factorization machine으로 추천시스템을 설계했다.
본 연구는 추천의 정확도 및 다양성을 향상시키기 위해, 가장 널리 사용되는 추천 알고리즘의 하나인 이웃 기반의 협업 필터링(Neighborhood-based Collaborative Filtering) 시스템의 개선방안 제시를 목적으로 한다. 이를 위해서 추천 시스템 사용자의 성향을 파악하고 이와 유사한 성향을 가진 이웃 사용자들 중에서 비교 가능한 선호도 정보가 많을수록 높은 가중치를 부여함으로써 최적의 이웃을 선택할 수 있도록 하였다. 영화 데이터를 이용하여 분석한 결과, 대부분의 경우 기존 시스템보다 더 정확하고 다양한 추천 결과를 얻을 수 있었다. 또한 사용자의 선호도를 여러 항목으로 평가할 경우, 사용자의 선호도 정보가 증가하여 추천 결과의 추가적인 향상을 가져왔다. 마지막으로, 추천의 정확도 및 다양성의 요소를 통합적으로 평가할 수 있는 방안을 제시하였다.
본 논문은 대화형 방송환경에서 부가서비스를 제공받기 위해서 탐다운(Top-Down)메뉴 검색을 하는 것이 아니라, 방송영상의 화면 내부에서 부가서비스가 제공되길 원하는 객체를 선택했을 때 선택한 객체에 대한 부가서비스를 제공하는 새로운 방법을 제안한다. 이를 위해서는 실시간으로 방송되고 있는 동영상과 객체정보(위치, 크기, 모양)의 동기를 맞추는 기술과 동영상 내부의 객체 추적 기술이 필수적이다. 동영상과 객체정보의 동기를 맞추는 기술은 마이크로소프트사의 다이렉트쇼(DirectShow)를 이용하였으며, 객체를 추적하기 위한 방법은 객체를 크게 사람과 사물로 나누어, 사람의 얼굴은 모델을 만들어 추적하는 모델 기반 얼굴 추적 방법(Model-based face tracking)을 사용하고 나머지 사물에 대해서는 객체의 영역을 지정하여 영역을 추적하는 움직임 기반 추적 방법(Motion-based Tracking)을 적용하였다. 또한 움직임 기반 추적을 할 수 있도록 하고 모델 기반 추적 방법을 적용하여 움직임이 큰 객체도 검색 영역 확장 없이 정확한 추적을 할 수 있도록 하고 모델 기반 추적 방법에는 타원 모델과 색상 모델을 결합한 얼굴 모델을 적용하여 얼굴이 회전하여도 정확한 추적을 할 수 있도록 개선하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.