DOI QR코드

DOI QR Code

Improving Neighborhood-based CF Systems : Towards More Accurate and Diverse Recommendations

추천의 정확도 및 다양성 향상을 위한 이웃기반 협업 필터링 추천시스템의 개선방안

  • Kwon, YoungOk (Division of Business Administration, Sookmyung Women's University)
  • Received : 2012.08.24
  • Accepted : 2012.09.02
  • Published : 2012.09.30

Abstract

Among various recommendation techniques, neighborhood-based Collaborative Filtering (CF) techniques have been one of the most widely used and best performing techniques in literature and industry. This paper proposes new approaches that can enhance the neighborhood-based CF techniques by identifying a few best neighbors (the most similar users to a target user) more accurately with more information about neighbors. The proposed approaches put more weights to the users who have more items co-rated by the target user in similarity computation, which can help to better understand the preferences of neighbors and eventually improve the recommendation quality. Experiments using movie rating data empirically demonstrate simultaneous improvements in both recommendation accuracy and diversity. In addition to the typical single rating setting, the proposed approaches can be applied to the multi-criteria rating setting where users can provide more information about their preferences, resulting in further improvements in recommendation quality. We finally introduce a single metric that measures the balance between accuracy and diversity and discuss potential avenues for future work.

본 연구는 추천의 정확도 및 다양성을 향상시키기 위해, 가장 널리 사용되는 추천 알고리즘의 하나인 이웃 기반의 협업 필터링(Neighborhood-based Collaborative Filtering) 시스템의 개선방안 제시를 목적으로 한다. 이를 위해서 추천 시스템 사용자의 성향을 파악하고 이와 유사한 성향을 가진 이웃 사용자들 중에서 비교 가능한 선호도 정보가 많을수록 높은 가중치를 부여함으로써 최적의 이웃을 선택할 수 있도록 하였다. 영화 데이터를 이용하여 분석한 결과, 대부분의 경우 기존 시스템보다 더 정확하고 다양한 추천 결과를 얻을 수 있었다. 또한 사용자의 선호도를 여러 항목으로 평가할 경우, 사용자의 선호도 정보가 증가하여 추천 결과의 추가적인 향상을 가져왔다. 마지막으로, 추천의 정확도 및 다양성의 요소를 통합적으로 평가할 수 있는 방안을 제시하였다.

Keywords

Acknowledgement

Supported by : Sookmyung Women's University

References

  1. Adomavicius, G. and A. Tuzhilin, "Toward the Next Generation of Recommender Systems : A Survey of the State-of-the-Art and Possible Extensions", IEEE Transactions on Knowledge and Data Engineering, Vol.17, No.6(1995), 734-749.
  2. Adomavicius, G. and Y. Kwon, "Improving Aggregate Recommendation Diversity Using Ranking- Based Techniques", IEEE Transactions on Knowledge and Data Engineering, Vol.24, No.5(2012), 896-911. https://doi.org/10.1109/TKDE.2011.15
  3. Adomavicius, G. and Y. Kwon, "New Recommendation Techniques for Multi-Criteria Rating Systems", IEEE Intelligent Systems, Vol.22, No.3(2007), 48-55. https://doi.org/10.1109/MIS.2007.58
  4. Breese, S., D. Heckerman, and C. Kadie, "Empirical Analysis of Predictive Algorithms for Collaborative Filtering", Proc. of the 14th Conference on Uncertainty in Artificial Intelligence, 1998.
  5. Brynjolfsson, E., Y. J. Hu, and D. Simester, "Goodbye Pareto Principle, Hello Long Tail : The Effect of Search Costs on the Concentration of Product Sales", Management Science, Vol.57, No.8(2011), 1373-1386. https://doi.org/10.1287/mnsc.1110.1371
  6. Choi, K., G. Kim, D. Yoo, and Y., Suh, "New Collaborative Filtering Based on Similarity Integration and Temporal Information", Journal of Intelligence and Information Systems, Vol.17, No.3(2011), 147-168.
  7. Fleder, D. and K. Hosanagar, "Blockbuster Culture's Next Rise or Fall : The Impact of Recommender Systems on Sales Diversity", Management Science, Vol.55, No.5(2009), 697-712. https://doi.org/10.1287/mnsc.1080.0974
  8. Goldstein, D. G. and D. C. Goldstein, "Profiting from the Long Tail", Harvard Business Review, June 2006.
  9. Herlocker, J. L., J. A. Konstan, L. G. Terveen, and J. Riedl, "Evaluating Collaborative Filtering Recommender Systems", ACM Transactions on Information Systems, Vol.22, No.1(2004), 5-53. https://doi.org/10.1145/963770.963772
  10. Im, I. and B. H. Kim, "The Effect of the Personalized Settings for CF-Based Recommender Systems", Journal of Intelligence and Information Systems, Vol.18, No.2(2012), 131-142.
  11. Jannach, D., Z. Karakaya, and F. Gedikli, "Accuracy Improvements for Multi-criteria Recommender Systems", Proc. of the 13th ACM Conference on Electronic Commerce, (2012), 674-689.
  12. Lemire, D. and A. Maclachlan, "Slope One Predictors for Online Rating-Based Collaborative Filtering", In SIAM Data Mining, 2005.
  13. McNee, S. M., J. Riedl, and J. A. Konstan, "Being Accurate is Not Enough : How Accuracy Metrics have hurt Recommender Systems", Conference on Human Factors in Computing Systems, (2006), 1097-1101.
  14. Park, D. H., H. K. Kim, I. Y. Choi, and J. K. Kim, "A Literature Review and Classification of Recommender Systems on Academic Journals", Journal of Intelligence and Information Systems, Vol.17, No.1(2011), 139- 152.
  15. Sahoo, N., R. Krishnan, G. Duncan, and J. Callan, "The Halo Effect in Multicomponent Ratings and Its Implications for Recommender Systems : The Case of Yahoo! Movies", Information Systems Research, Vol.23, No.1(2012), 231-246. https://doi.org/10.1287/isre.1100.0336
  16. Sarwar, B., G. Karypis, J. A. Konstan, and J. Riedl, "Item-Based Collaborative Filtering Recommendation Algorithms", Proc. of the 10th International World Wide Web Conference, 2001.
  17. Smyth, B. and P. McClave, "Similarity vs. Diversity", Proc. of the 4th International Conference on Case-Based Reasoning : Case- Based Reasoning Research and Development, 2001.
  18. Zhang, M. and N. Hurley, "Avoiding monotony : improving the diversity of recommendation lists", Proc. of the 2nd ACM Conference on Recommender Systems, (2008), 123-130.