Design of A CMOS Composite Cell Analog Multiplier

CMOS 상보형 구조를 이용한 아날로그 멀티플라이어 설계

  • Lee, Geun-Ho (Dept.of Electronics Information Engineering, Chonbuk National University) ;
  • Choe, Hyeon-Seung (Dept.of Electronics Information Engineering, Chonbuk National University) ;
  • Kim, Dong-Yong (Dept.of Electronics Information Engineering, Chonbuk National University)
  • 이근호 (전북대학교 전자정보공학부) ;
  • 최현승 (전북대학교 전자정보공학부) ;
  • 김동용 (전북대학교 전자정보공학부)
  • Published : 2000.03.01

Abstract

In this paper, the CMOS four-quadrant analog multipliers for low-voltage low-power applications ate presented. The circuit approach is based on the characteristic of the LV(Low-Voltage) composite transistor which is one of the useful analog building blocks. SPICE simulations are carried out to examine the performances of the designed multipliers. Simulation results are obtained by 0.6${\mu}{\textrm}{m}$ CMOS parameters with 2V power supply. The LV composite transistor can easily be extended to perform a four-quadrant multiplication. The multiplier has a linear input range up to $\pm$0.5V with a linearity error of less than 1%. The measured -3㏈ bandwidth is 290MHz and the power dissipation is 373㎼. The proposed multiplier is expected to be suitable for analog signal processing applications such as portable communication equipment, radio receivers, and hand-held movie cameras.

본 논문에서는 저전압 저전력 시스템에 응용 가능한 CMOS 4상한 아날로그 멀티플라이어를 제안하였다. 제안된 멀티플라이어는 저전압에서 동작이 용이하며 아날로그 회로를 설계하는데 자주 이용되는 LV(Low-Voltage) 상보형 트랜지스터 방식의 특성을 이용하였다. LV 상보형 구조는 등가 문턱전압을 감소시킴으로서 회로의 동작전압을 감소시킬 수 있는 특징이 있다. 설계된 회로의 특성은 2V 공급전압하에서 0.6㎛ CMOS 공정파라미터를 갖는 HSPICE 시뮬레이션을 통하여 측정되었다. 이때 ±0.5V까지의 입력선형 범위내에서 선형성에 대한 오차는 1%미만이었다. 또한 -3㏈ 점에서의 대역폭은 290㎒, 그리고 전력소모는 373㎼값을 나타내었다.

Keywords

References

  1. M. Jeong, S. Takagi and N. Fujii, 'An Area-Efficient and Highly-Linear CMOS Four-Quadrant Analog multiplier,' Proc. of the 1997 lEEJ. 1st Analog VLSI Workshop. pp. 89-95, May 1997
  2. S. C. Qin and R. L. Geiger, 'A ${\pm}$ 5V CMOS analog multiplier,' IEEE J. Solidstate Circuits. vol. SC-22, no. 6, pp. 11431146, Dec. 1987
  3. H. R. Mehrvars and C. Y. K wok, 'A novel multi-input floating-gate MaS four-quadrant analog multiplier,' IEEE J. Solidstate Circuits. vol. 31, no. 8, pp. 1123·-1131, Aug. 1996
  4. Z. Hong and H. Melchior, 'Four-quadrant CMOS analogue multiplier,' Electronics Letters vol. 20, no. 24, pp. 1015-1016, Nov. 1984 https://doi.org/10.1049/el:19840691
  5. J. H. Tsay, S. I. Liu, J. J. Chen and Y. P. Wu, 'CMOS four-quadrant multiplier using triode transistors based on regulated cascode structure' Electronics Letters. vol. 31, pp. 962-962, June 1995 https://doi.org/10.1049/el:19950638
  6. S. I. Liu, C. C. Chang and Y. S. Hwang, 'New CMOS Four-Quadrant Multiplier and Squarer Circuits,' Analog Integrated Circuits and Signal Processing. vol. 9, pp. 257-263, 1996 https://doi.org/10.1007/BF00194909
  7. C. Hwang, A. Hyogo, M. Ismail and H. S. Kim, 'LV CMOS analog VLSI composite cell design and its application to high speed multiplier,' Proc. of the 1997 lEEJ, 1st Analog VLSI Workshop, pp. 95 - 98, May 1997
  8. A. Hyogo, C. Hwang, M. Ismail, and K. Sekine, 'LV/LP CMOS Square-Law Composite Transistors for Analog VLSI Applications,' Proc. of the 1997 lEEJ. 1st Analog VLSI Workshop, pp. 139-143, May 1997
  9. H. S. Choi, N. G. Kim and D. Y. Kim, 'A CMOS Four-Quadrant Analog Multiplier For Low-Voltage Low-Power,' Proc. of the 1998 lEEJ. 2nd Analog VLSI Workshop. pp. 61-65, June 1998
  10. S. C. Li, 'A Very-High-Frequency CMOS Four-Quadrant Analogue Multiplier' IEEE International Symposium on Circuits and System. pp. 233-236, June 1997 https://doi.org/10.1109/ISCAS.1997.608681
  11. E. Seevinck and R. F. Wassenaar, 'A versatile CMOS linear transconductor/ square-law function circuit,' IEEE J. Solidstate Circuits. vol. SC - 22, pp. 366 - 377, June 1987
  12. M. Ismail and T. Fiez, Analog VLSI Signal and Information Processing. McGraw Hill, 1994