• Title/Summary/Keyword: Motion-based interaction

Search Result 415, Processing Time 0.03 seconds

SenseMessenger : The Haptic Sense Generator based on Motion Recording (센스메신져 : 움직임 패턴 기반 햅틱 재생 장치)

  • Lim, Soo-Hyun;Cho, Hyun-Sang;Jang, Sun-Yeon;Hahn, Min-Soo
    • 한국HCI학회:학술대회논문집
    • /
    • 2009.02a
    • /
    • pp.954-960
    • /
    • 2009
  • In this paper, we propose "SenseMessenger" as a novel interaction method to capture and play tactile sense to let users feel enhanced sense experience. To improve this, we reconstructed the process of making cocktail to be digitalized for reinforcing the quality of user's experience, and designed cup-shaped devices, Sense Messenger, which is consist of Sense-recorder, Sense-player, and Sense-table. And, using these devices with common users, we discussed future applications.

  • PDF

A STUDY ON AERODYNAMIC ANALYSIS OF A SUB-MUNITION WITH DRAG RIBBON (항력리본이 장착된 자탄의 공력 해석 연구)

  • Kang, Seung-Hee;Kim, Jin-Suk;Ahn, Sung-Ho
    • Journal of computational fluids engineering
    • /
    • v.16 no.4
    • /
    • pp.14-20
    • /
    • 2011
  • The initial unfolding motion simulation of a sub-munition with drag ribbon for precision guidance and reliable operation has been investigated by analyzing its unsteady aerodynamic load and fluid structure interaction. The effects of change in the ribbon configuration and flow angle are numerically studied using a commercial software "XFLOW" based on Lattice-Boltzmann Method. It is shown that the motion is affect adversely by the separation bubble formed posterior part of the fuselage. The rolling moment for arming of the sub-munition is increased with angle of attack and rotational movement.

Numerical Simulation of Blood Cell Motion in a Simple Shear Flow

  • Choi, Choeng-Ryul;Kim, Chang-Nyung;Hong, Tae-Hyub
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1487-1491
    • /
    • 2008
  • Detailed knowledge on the motion of blood cells flowing in micro-channels under simple shear flow and the influence of blood flow is essential to provide a better understanding on the blood rheological properties and blood cell aggregation. The microscopic behavior of red blood cell (RBCs) is numerically investigated using a fluid-structure interaction (FSI) method based on the Arbitrary-Lagrangian-Eulerian (ALE) approach and the dynamic mesh method (smoothing and remeshing) in FLUENT (ANSYS Inc., USA). The employed FSI method could be applied to the motions and deformations of a single blood cell and multiple blood cells, and the primary thrombogenesis caused by platelet aggregation. It is expected that, combined with a sophisticated large-scale computational technique, the simulation method will be useful for understanding the overall properties of blood flow from blood cellular level (microscopic) to the resulting rheological properties of blood as a mass (macroscopic).

  • PDF

NATURAL INTERACTION WITH VIRTUAL PET ON YOUR PALM

  • Choi, Jun-Yeong;Han, Jae-Hyek;Seo, Byung-Kuk;Park, Han-Hoon;Park, Jong-Il
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2009.01a
    • /
    • pp.341-345
    • /
    • 2009
  • We present an augmented reality (AR) application for cell phone where users put a virtual pet on their palms and play/interact with the pet by moving their hands and fingers naturally. The application is fundamentally based on hand/palm pose recognition and finger motion estimation, which is the main concern in this paper. We propose a fast and efficient hand/palm pose recognition method which uses natural features (e.g. direction, width, contour shape of hand region) extracted from a hand image with prior knowledge for hand shape or geometry (e.g. its approximated shape when a palm is open, length ratio between palm width and pal height). We also propose a natural interaction method which recognizes natural motion of fingers such as opening/closing palm based on fingertip tracking. Based on the proposed methods, we developed and tested the AR application on an ultra-mobile PC (UMPC).

  • PDF

Simulation-Based Prediction of Steady Turning Ability of a Symmetrical Underwater Vehicle Considering Interactions Between Yaw Rate and Drift/Rudder Angle

  • Park, Jeong-Hoon;Shin, Myung-Sub;Jeon, Yun-Ho;Kim, Yeon-Gyu
    • Journal of Ocean Engineering and Technology
    • /
    • v.35 no.2
    • /
    • pp.99-112
    • /
    • 2021
  • The prediction of maneuverability is very important in the design process of an underwater vehicle. In this study, we predicted the steady turning ability of a symmetrical underwater vehicle while considering interactions between the yaw rate and drift/rudder angle through a simulation-based methodology. First, the hydrodynamic force and moment, including coupled derivatives, were obtained by computational fluid dynamics (CFD) simulations. The feasibility of CFD results were verified by comparing static drift/rudder simulations to vertical planar motion mechanism (VPMM) tests. Turning motion simulations were then performed by solving 2-degree-of-freedom (DOF) equations with CFD data. The turning radius, drift angle, advance, and tactical diameter were calculated. The results show good agreement with sea trial data and the effects on the turning characteristics of coupled interaction terms, especially between the yaw rate and drift angle.

Gesture based Input Device: An All Inertial Approach

  • Chang Wook;Bang Won-Chul;Choi Eun-Seok;Yang Jing;Cho Sung-Jung;Cho Joon-Kee;Oh Jong-Koo;Kim Dong-Yoon
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.5 no.3
    • /
    • pp.230-245
    • /
    • 2005
  • In this paper, we develop a gesture-based input device equipped with accelerometers and gyroscopes. The sensors measure the inertial measurements, i.e., accelerations and angular velocities produced by the movement of the system when a user is inputting gestures on a plane surface or in a 3D space. The gyroscope measurements are integrated to give orientation of the device and consequently used to compensate the accelerations. The compensated accelerations are doubly integrated to yield the position of the device. With this approach, a user's gesture input trajectories can be recovered without any external sensors. Three versions of motion tracking algorithms are provided to cope with wide spectrum of applications. Then, a Bayesian network based recognition system processes the recovered trajectories to identify the gesture class. Experimental results convincingly show the feasibility and effectiveness of the proposed gesture input device. In order to show practical use of the proposed input method, we implemented a prototype system, which is a gesture-based remote controller (Magic Wand).

Probabilistic analysis of structural pounding considering soil-structure interaction

  • Naeej, Mojtaba;Amiri, Javad Vaseghi
    • Earthquakes and Structures
    • /
    • v.22 no.3
    • /
    • pp.289-304
    • /
    • 2022
  • During strong ground motions, adjacent structures with insufficient separation distances collide with each other causing considerable architectural and structural damage or collapse of the whole structure. Generally, existing design procedures for determining the separation distance between adjacent buildings subjected to structural pounding are based on approximations of the buildings' peak relative displacement. These procedures are based on unknown safety levels. This paper attempts to evaluate the influence of foundation flexibility on the structural seismic response by considering the variability in the system and uncertainties in the ground motion characteristics through comprehensive numerical simulations. Actually, the aim of this study is to evaluate the influence of foundation flexibility on probabilistic evaluation of structural pounding. A Hertz-damp pounding force model has been considered in order to effectively capture impact forces during collisions. In total, 5.25 million time-history analyses were performed over the adopted models using an ensemble of 25 ground motions as seismic input within OpenSees software. The results of the study indicate that the soil-structure interaction significantly influences the pounding-involved responses of adjacent structures during earthquakes and generally increases the pounding probability.

Human Motion Analysis for Designing Social Robots Based on Cultural Difference (문화적 차이를 중심으로 본 사회적 로봇 디자인을 위한 인간 동작의 분석)

  • Yang, Eui-Jung;Hwang, Won-Il
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.38 no.2
    • /
    • pp.133-143
    • /
    • 2012
  • The study on social robots has been actively conducted in the robot research community. In the area of robot design, however, there are few studies regarding robot motions that are one of the methods for interaction between humans and robots. This is a preliminary study to find preferred human motions that can be applied to social robots. We conducted a two-phased empirical study about preferred human motions. In the first phase, four representative human motions, such as 'greeting', 'I don't know', 'positive answer', and 'giving', were captured through 28 body makers and video recording. 10 young and 6 elderly Singaporeans participated in the motion capture process. In the second phase, the communication efficiency, emotion, and satisfaction of the human motions recorded in the first phase were measured by a questionnaire and 31 young Koreans, 35 young Singaporeans participated to investigate cultural differences. We drew the conclusion that motions used in the same culture are efficient in communication and also give friendliness and satisfaction. In addition, regardless of user's culture, young people's motions and female motions were preferred in terms of communication efficiency, emotional aspect, satisfaction.

Numerical Simulation of Flow around Free-rolling Rectangular Barge in Regular Waves (규칙파중 횡동요 하는 사각형 바지선 주위 유동의 수치모사)

  • Jung, Jae-Hwan;Yoon, Hyun-Sik;Kwon, Ki-Jo;Cho, Sung-Joon
    • Journal of Ocean Engineering and Technology
    • /
    • v.25 no.2
    • /
    • pp.15-20
    • /
    • 2011
  • This study aimed at validating the adopted numerical methods to solve two-phase flow around a two-dimensional (2D) rectangular floating structure in regular waves. A structure with a draft equal to one half of its height was hinged at the center of gravity and free to roll with waves that had the same period as the natural roll period of a rectangular barge. In order to simulate the 2D incompressible viscous two-phase flow in a wave tank with the rectangular barge, the present study used the volume of fluid (VOF) method based on the finite volume method with a standard turbulence model. In addition, the sliding mesh technique was used to handle the motion of the rectangular barge induced by the fluid-structure interaction. Consequently, the present results for the flow field and roll motion of the structure had good agreement with those of the relevant previous experiment.

Development of a Cost-Effective Tele-Robot System Delivering Speaker's Affirmative and Negative Intentions (화자의 긍정·부정 의도를 전달하는 실용적 텔레프레즌스 로봇 시스템의 개발)

  • Jin, Yong-Kyu;You, Su-Jeong;Cho, Hye-Kyung
    • The Journal of Korea Robotics Society
    • /
    • v.10 no.3
    • /
    • pp.171-177
    • /
    • 2015
  • A telerobot offers a more engaging and enjoyable interaction with people at a distance by communicating via audio, video, expressive gestures, body pose and proxemics. To provide its potential benefits at a reasonable cost, this paper presents a telepresence robot system for video communication which can deliver speaker's head motion through its display stanchion. Head gestures such as nodding and head-shaking can give crucial information during conversation. We also can assume a speaker's eye-gaze, which is known as one of the key non-verbal signals for interaction, from his/her head pose. In order to develop an efficient head tracking method, a 3D cylinder-like head model is employed and the Harris corner detector is combined with the Lucas-Kanade optical flow that is known to be suitable for extracting 3D motion information of the model. Especially, a skin color-based face detection algorithm is proposed to achieve robust performance upon variant directions while maintaining reasonable computational cost. The performance of the proposed head tracking algorithm is verified through the experiments using BU's standard data sets. A design of robot platform is also described as well as the design of supporting systems such as video transmission and robot control interfaces.