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Abstract

In this paper, we develop a gesture-based input device equipped with accelerometers and gyroscopes. The sensors measure the
inertial measurements, i.e., accelerations and angular velocities produced by the movement of the system when a user is inputting
gestures on a plane surface or in a 3D space. The gyroscope measurements are integrated to give orientation of the device and
consequently used to compensate the accelerations. The compensated accelerations are doubly integrated to yield the position of
the device. With this approach, a user's gesture input trajectories can be recovered without any external sensors. Three versions
of motion tracking algorithms are provided to cope with wide spectrum of applications. Then, a Bayesian network based recog-
nition system processes the recovered trajectories to identify the gesture class. Experimental results convincingly show the feasi-
bility and effectiveness of the proposed gesture input device. In order to show practical use of the proposed input method, we
implemented a prototype system, which is a gesture-based remote controller (MagicWand).

Key Words : Input device, gesture input system, accelerometer, gyroscope, inertial navigation system, mobile phone, mobile de-
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1. Introduction

This work is part of a project for the development of an
inertial sensor based gesture input device involving Samsung
Advanced Institute of Technology (SAIT).

A large number of computing devices found today have in-
creasing computing power, all the while becoming extremely
miniaturized even to be wom or embedded in the
environment. Due to their totally different appearances com-
pared with PCs, the wide spread WIMP (Windows
Menu Pointer) interface is no longer valid for those systems.
Especially, input devices are one of major bottlenecks for
users to fully enjoy their high performance but small sized
computing devices. For example, manufacturers of TV with
internet connectivity provide users with wireless keyboard
mouse pairs or button rich remote controllers as input de-
vices, both of which are still uncomfortable for most
customers.

There have been fruitful research and industrial works in
the design of efficient input devices for post PC devices. To
cite a few, tangible input devices, voice input devices, gesture
input devices, handwriting input devices, and so forth.
However, no pervasive and popular input devices are available
yet and it is pointed out in the literature [1] that a single in-
put method cannot cover diverse needs of users, which leads
to research on multimodal input systems.

As an attempt to reach the goal of providing users with
comfortable but easy to use input device, the authors devel-
oped an input device using inertial sensing technology to con-
trol information appliances. Gestures, which are defined as
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stylized motions that convey meaning [2], are adopted in
many input systems today due to their intuitiveness [3].
Among various kinds of gesture input devices [4], vision
based gesture input devices are popular in research fields.
These systems are composed of several cameras installed in
the environment, an image processing unit and a recognition
system. Another interesting approach is to adopt electromyo-
gram (EMG) technology to recognize user’s gestures {4]. For
small sized computing systems such as wearable computers,
however, the camera based gesture input devices cannot be
viable solutions because they require large external installation
which cannot be carried with users.

Simply speaking, the role of cameras in most gesture
based input devices is to extract the motion of a user which
may fall under the category of motion tracking. Very similar
to the field of input systems, motion tracking also deploys a
lot of available technologies; mechanical sensing, inertial sens-
ing, acoustic sensing, magnetic sensing, ‘optical sensing, and
radio/microwave sensing [5].

Motion tracking systems can be categorized as external ref-
erence types and self contained types. External referenced
types use some external reference sources or digitizing surfa-
ces to track the position of an object, whose portability is lim-
ited due to additional devices for referencing. To the contrary,
the self contained types do not require additional devices and
their usability and comfortability is superior to that of the ex-
ternal referenced types. Motion tracker technologies using opti-
cal sensors are the most successful and commercially available
devices to make self contained input devices but their func-
tionality is limited by the fact that the movement range should
be within the line of sight of the detector (camera). In addi-
tion, they also require a surface to detect the reflected light.

Unlike above mentioned motion tracking technologies, the



inertial sensing approach is quite unique from the view point
that it can track the motion of a system without external elec-
tromagnetic signals. Therefore, the system, which is called in-
ertial navigation system (INS), does not suffer from signal
coverage problem which is common in external referenced
systems such as global positioning system (GPS). The idea of
building input devices using inertial sensors such as accel-
erometers and gyroscopes has long been investigated and re-
ported in the research papers [6-22] or patents [23-32].

At the earliest stage of the research, the acceleration meas-
urements were mainly used for signature verification [6, 7,
13-15, 23, 29]. In [12], a pointing device which can be used
in 3D space was discussed. Strickland et al. [17] and
Kobayashi et al. [10] applied inertial measurement units to
head tracker systems. In [22, 23], a data glove system was
constructed using accelerometers only. The application of in-
ertial sensors to mice was also considered in [18]. For a pen

type input device, Ishikawa et al. [11] suggested to use ac-
celerometers to recover the handwriting trajectory. Verplaetse
[34] discussed possibility of the pen type input device equip-
ped with inertial measurement units but its realization was far
from current state of art. Several patents [35-37] claimed input
devices with various combination of accelerometers and an-
gular rate sensors. In [19], the vibration caused by the friction
between a writing surface and a pen tip was analyzed to give
the direction information of the pen tip. Miyagawa et al. [9,
38] reported a inertial pen system that senses tri axis accel-
erations and angular velocities. More recently, Cheok et al. [§8]
proposed an accelerometer based pen system for wearable
computers.

Reviewing patents on input devices adopting inertial sensing
technology, [24] is considered to be the most fundamental pat-
ent, whose predecessor is from IBM [27]. The pen systems
considered in the both patents use accelerometer and the main
difference is their applications where [27] is for signature ver-
ification and [24] is for drawing and writing. In [28], a pen
type input device with two accelerometers and one gyroscope
and related algorithms has been presented. Baron Inc. [29]
suggested to use accelerometers to identify users’ signature
and positioning sensors such as an ultrasonic sensor or an
electro magnetic coil to detect the position of the pen tip.
Ricoh Inc. [26] claimed a device that senses six degree of
freedom (DOF) inertial measurements and related algorithms.
Japanese patent [30] uses accelerometers and ultrasonic sensor
together to recover the handwriting motion. In [39-41], 3D in-
put devices, which adopt different configurations of motion
sensors including accelerometers, angular rate sensors, and so
forth, have been claimed whose major application fields in-
clude pointing control of PCs and simple character
recognition. It should be noticed that 6 DOF inertial measure-
ments, i.e., tri axis accelerations and angular rates are re-
quired to recover the perfect 3D information of a moving ob-
ject in the free space. However, except for [9, 26, 38], most
works have utilized less number of sensors and can be used
for only gesture input, pointing, signature verification, etc.

Although there have been fruitful research works and pat-
ents on input devices with inertial sensing technology, they
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have not been seriously deployed in commercially available
input devices [24]. One reason is that integration of inertial
sensors in the allowed size for target systems with high accu-
racy has been very difficult if not impossible. However, this
problem is being gradually relieved as low cost MEMS in-
ertial sensors become commercially available in the market.
Another barrier to make a useful inertial input devices is the
unbounded growth of error inherent in INS. In aerospace ap-
plications, GPS is used to correct the errors of INS but is not
feasible for small sized systems such as a gesture input de-
vice due to its size and battery life problems.

Motivated by the above observations, this paper aims at de-
veloping a low cost, small sized inertial input device which
can be used without external reference systems. More specifi-
cally, we first synthesize inertial measurement unit (IMU) with
commercially available MEMS type accelerometers and gyro-
scopes, based on which a gesture input device is developed.
In addition to the theoretically perfect 6 DOF inertial navi-
gation algorithm, the authors also develop alternative inertial
navigation methods with less number of sensors. To alleviate
the problem of unbounded increase of error in INS, we adopt
the slightly modified version of zero velocity update (ZUPT)
[42, 43] fit for our application. The obtained 3D position in-
formation is then recognized by Bayesian network pattern
recognizer. In this stage, the obtained 3D position information
of motion is projected to 2D space for the pattern recognizer
module to maximize its recognition performance.

The main contribution of this paper is to establish the sys-
tematic design procedure of a gesture based input device by
using inertial sensing technology. The proposed schemes and
techniques carried out in this work can be used to large spec-
trum of applications such as 3D pointing, motion tracking, and
so forth. Qur experimental results convincingly show that the
proposed gesture input device provides a satisfactory
performance. We should also note that the implementation is
quite simple but successful to show a promising way of com-
mercialization of inertial input devices. Finally, we provide an
illustrative prototype system, which is applied for remote con-
trol systems, to show the commercial feasibility of the pro-
posed technique.

The rest of this paper is organized as follows. Section 2 in-
troduces the brief overview of gesture based input devices
and related technologies, followed by a description of the mo-
tion tracking algorithms 3 and recognition algorithm 4. A
fruitful analysis and discussions based on real experiments is
proven in Section 5 whose commercial applicability is pro-
vided by implementing two prototype systems 6. Finally, a
conclusion of this paper is given in Section 7

2. Overview of the proposed gesture based
input device

By adopting inertial sensing technology, the proposed sys-
tem is intended to provide users with very simple and com-
fortable way of interaction with their own machines with little
background information required to use it.
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To achieve this goal, the proposed system senses a user’s
hand gestures and recognizes it, which is probably used to
generate appropriate command signals for controlling external
devices. Fig. 1 presents the overview of the proposed gesture
input system. The most important components are the inertial
measurement unit, the motion tracking algorithm, the Bayesian

network based recognizer. The inertial measurement unit
measures tri-axis acceleration and angular rate measurements
relative to a fixed reference system. The motion tracking algo-
rithm converts the measurements to actual 3D position (X,
Y, Z) and attitude information (roll, pitch, yaw). The
Bayesian network based recognizer is trained based on data
collected from the system to decide actual meaning conveyed
by the user’s gestures. The structure of the Bayesian network

based recognizer is flexible enough to use various kinds of
signals such as the raw inertial measurements, positional in-
formation, attitude information, etc.

2.1. Hardware system overview
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Fig. 1 Overview of the proposed gesture input device
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Fig. 2 Hardware configuration

Figure 2 shows the hardware configuration of the whole
system. In order to qualitatively verify the performance of the
proposed system, the InterSense (http://www.isense.com) IS
900 motion tracking system is adopted. The IS 900 motion
tracking system utilizes the combination of ultrasonic and in-
ertial sensors to give full 6 DOF motion information, whose
main component is a tracker and stations (tracked devices).

We have also implemented an in house tracked device
which consists of IS 900 station and the main sensor module
as shown in Fig. 3. Motion information given by IS 900
motion tracking system is connected to an RS232C interface
on a PC.
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Fig. 3 Tracked device composed of a IS 900 station and the
sensor module

A data acquisition program written in Visual C++ was used
at the PC to receive and save the data from the sensor mod-
ule and the IS 900 motion tracker to the hard disk. Data
sampling rates for the sensor module and the motion tracker
are set to 100 Hz. In addition, it guides users through a pre-
defined sequence of gestures. The data is stored in the struc-
tured database and used to evaluate the performance of the
system.

The sensor module in the system used in this study is com-
posed of a dual axis accelerometer, a single z axis accel-
erometer, two single axis gyroscopes, and a single z axis gy-
roscope, which are all instaled in 11.7 X 2 X 0.26 (cm)
printed circuit board (PCB).

As shown in Fig. 2, the accelerometers and gyroscopes,
which are sometimes called inertial sensors collectively, are
arranged so that tri-axis accelerations and-angular rates can be
measured. The resulting configuration gives inertial measure-
ment unit (IMU). In this configuration, the gyroscope meas-
ures the change of the angular rate of the system about its
main axis of rotation and the accelerometer senses linear ac-
celeration as well as gravity along its sensing axis. By com-
bining signals from both sensors, one can compute the 3D
motion relative to a fixed inertial frame.

On the presented system, following inertial sensors are
packaged. The characteristics of each unit is described in
Tables 1 - 4.
® A Kionix dual axis accelerometer (KX120 120) with
range of + 2g, sensitivity of 1000 mV/g and 2.5 V of zero g
offset voltage for the measurement of the specific forces re-
solved along the x and y axes of the system. The physical
value is calculated as follows:

fronzo— 120 == VKmOE)LéO Lo 9.8 (m/s2) 1)
® A Kionix single axis accelerometer (KXFO00 L20) with
range of * 2g, sensitivity of 1000m V/g and 2.5V of zero g
offset voltage for the measurement of the specific force re-
solved along the z axis of the system. The physical value is
calculated as follows:



S rxro - ro0 =— V}im(_)%O—ﬁQB (m/s? (2)

® Two single axis gyroscope (Murata ENC 03M) with
range of +300deg/s, sensitivity of 0.67 mV/deg/sec and off-
set voltage 1.35V for the measurement of angular velocities
along the x and z axes. The physical value is calculated as
follows:

Keve—ozr - 180 (deg/s) ®

where Ko = 3.33 X 0.67 < 107°,

WeNC—030 =

® A single axis gyroscope (ADI ADXRS300AQC) with
range of +300deg/s, sensitivity of 5m V/deg/s and offset
voltage 2.5V for the measurement of angular velocity along
the 5 axis. The physical value is calculated as follows:

Vipxmwage ~135 1 (deg/s) (4

w =
ADXRS300AQC KADXRS&UOAQC 1 80

where KADX[?S}OOAQC =30X 107'3

Table 1 Characteristics of the KX120 L20 accelerometer

Parameters Units | Specifications
Range g +2.0
Sensitivity mV /g
Offset vs. Temperature | mV
Sensitivity error %% : typical
Resolution myg 0.1t00.3
Electrical
Input supply voltage | V 504028
Input supply current | maA 6.5 typical
Package mm 16-pin SOIC Over-modeled Plastic

Table 2. Characteristics of the KXF00 L20 accelerometer

Parameters Units | Specifications
Range q +2.0
Sensitivity mV/g | 1600

Offset vs. Temperatwe | ml’ +150
Sensitivity error % £2.0 typical
Resolution mg 0.1t00.3
Electrical

Input supply voltage | V 5.0+ 025

Input supply cutrent | mA
Package nun

6.5 typical
16-pin SOIC Over-modeled Plastic

Table 3. Characteristics of the ENC03 M gyroscope

Parameters Units Specifications
Range deg./sec. £300
Sensitivity mVideg.fsec. | 0.67
Offset vs. Temperature | % +20at-5t075°C
Electrical

Input supply voltage | V 2.7t0 525

Input supply current | mA s

Table 4. Characteristics of the ADXRS300AQC accelerometer

Parameters Unirts Specifications
Range deg./sec. 300
Sensitivity mVideg./sec. | 5% 0.4
Electrical
Input supply voltage | V 5.0 £ 0.25
Input supply current | mA 6.0 typical

Package mm 16-pin SOIC Over-modeled Plastic
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The data output by sensors are analogue voltage output
whose range is between ‘0 and 5 volts. The data acquisition
board to collect data from the developed sensor module is
National Instruments’ NI DAQPad6020E. It has 16 analogue
inputs with 12 bit resolution, two analogue outputs with 12 bit
resolution, § digital input output lines and two 24 bit coun-
ter/timers.

2.2. Software system overview

Since we have intended to collect large amount of data
from diverse types of users and apply various motion tracking
and recognition algorithms, we developed an integrated soft-
ware platform to evaluate the data. The platform is called
GPIEE  (Gesture input device Integrated Experiment
Environment). The integrated system gets the hand motion da-
ta files and configuration files as input and produces the quan-
titative evaluation and recognition results as its output. In or-
der to recognize the hand motion trajectory, several modules
work corporately. First, the trajectory estimation module
(Trajectory Estimator) converts raw inertial sensor signals into
2D trajectories. In this module, quantitative analysis is also
performed. Then, the training module (Trainer) identifies the
optimal structure and parameters for the Bayesian network
recognizer. With the trained Bayesian network recognizer, out-
put of the trajectory estimation module is used as input to
recognition module (Recognizer). Finally, the recognition anal-
ysis module (Result Analyzer) calculates the statistics of rec-
ognition performance.

Contf file for IES

Integrated Experiment System (IES) ‘_
Conf file Conf file
for TE for TN
| Trajectory Trajectory i Trained
b8 Estimator DT ——»  Trainer Model
Conf file Conf file
for REC for RA
Recognition__ Result Recognition
Recognizer Result File Statistics File

Fig. 4. Overview of GPIEE

3. Sensing Motions Produced by User’s
Gesture

The first step to realize the concept of the proposed system
is to identify physical motion properties, i.e., 3D position and
orientation, shown in a fixed inertial frame. In this work, we
adopt INS theory since it gives the relative position and atti-
tude of the system without external reference sources whose
requirements are quite suitable for the concept of the proposed
system. In the following, the -principle of operations of inertial
sensing technology is briefly introduced.

Fig. 5 shows the system in the free space. The navigation
frame #n represented by the orthogonal axes X, Y, and Z is the

233



International Journal of Fuzzy Logic and Intelligent Systems, vol. 5, no. 3, September 2005

coordinate frame with respect to which the location of the
system needs to be estimated. The body frame 5 is attached to
the system, whose x, y, and z axes are aligned with those of
the accelerometers. In order to compute the trajectories pro-
duced by the handwriting movement in the free space from
the acceleration, three axes acceleration measurements and
Euler angles (roll, pitch, and yaw) are required, by which the
acceleration measurements are transformed into the accel-
erations in the navigation frame. The actual trajectories are
obtained after double integration process. The governing INS
equations of the 3D positioning used in this paper can be ex-
pressed as follows:

P=v,
I-/,,:Cn b—G

. _wpSINg+ o cosd

_‘b_ cos d ®)
0= w pcoS P — W p,Sing

$=w pt+ (@ ,5ind+w ycos@)tan §

where the subscript » denotes the navigation frame and b
denotes the body frame, A4,= [A,, A, A,,]%is the measured
acceleration along the axes of the object, A4, A,y and Ay,
are the component of the acceleration vector in each axis,
P,=[P. P, P.]"
object (the origin of the body frame) in the inertial frame and
V,=[Vie Vi, V,.)7 is the rate of change of P, i. e., ve-
locity, G is the constant gravity vector shown along the z ax-

is, (Whz, wyy, w),) are body frame inertial angular rate vector

is the position vector of the moving

resolved along the object axis, (@, theata, ) = (roll, pitch,
yaw) are Euler angles. Here, the matrix C7 = C'7 refers to
the direction cosine matrix which describes the rotational rela-
tionship between the navigation frame and the body frame and
the function of the three Euler angles. The detailed mathemat-
ical description of the direction cosine matrix is given in (6).
sch — 56

cYeo+ sshsp clsp| (6)
—cysp + sysbedp cOco

where ¢ denotes cos and s denotes sin.

cypcl
Ct =] — sce + cpsbsg
ssf+ cypsbcd

In addition, the initial roll and pitch angle obtained by us-
ing

= tan~ —:7-L (7
bz
' A
0 =sin 2 —gon e &
g VAL + A

Theoretically speaking, the system can measure its three di-
mensional movement with signals from attached inertial sen-
sors only. Unfortunately, the described inertial sensing scheme
cannot be applied directly since there is an unbounded growth
of error. To clarify this point, let us consider the simplest
case where an object is moving in the one dimensional space.
Then, the governing INS equation can be described by
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Fig. 5. Vehicle and Tangent Plane Coordinate Systems

p=p0+v0t+%5t2 @

where p is the position, p, is the initial position, v, is the

initial velocity, a is the acceleration measurement and ¢ is
time. Therefore, if there is a small error in the measured ac-
celeration, the final positional error will unlimitedly grow with
proportional to #°. Since INS applied to compute 3D position-
ing involves more inertial sensors and integration steps, the re-
sultant error is much more severe.

In the field of aerospace or robotics, this problem is usually
remedied by taking use of additional positioning sensors,
which cannot be used to the system since it lacks those addi-
tional sensors.

Another problem, which is specific to the system, is that it
is a small commercial device. In the sense of size and battery
life time, more the number of sensors increases, more size and
battery power are required. Therefore, it is definitely necessary
to investigate various combination of inertial sensor config-
urations which can provide enough performance for the pro-
posed system.

With those problems in mind, the aim of the remaining part
of this section is to suggest simple but effective signal proc-
essing methods to limit or avoid the positioning errors of the
presented system with various sensor configurations.
Specifically, we present some of possible sensor configurations
and corresponding motion sensing methods. Before going fur-
ther, it should be noticed that some of motion sensing algo-
rithms presented in this section are applied for patents [44-47].

3.1. Method 1: Recovery of user’s handwriting motions
based on full 6 DOF inertial measurement

The INS typically employs additional aiding sensors such
as GPS to guarantee accuracy for long term operations. If
there are no additional navigation sensors, pure INS algorithm
(5) is utilized to calculate the position, velocity, and attitude
of the object in the free space. The most popular way of re-
moving errors without aiding sensors is zero velocity update



(ZUPT) [42, 43, 48-50] or zero velocity compensation [51]. In
the ZVC scheme, the navigation system regularly stops at a
certain position. Since the system is completely stationary, one
can correct navigation errors using the observed velocity errors
at the ZVC point. In the correction, an optimal estimation pro-
cedure such Kalman filtering is generally utilized, which is
not feasible for the proposed system due to the computational
burden to implement Kalman filter. Therefore, we implement a
simplified version of ZVC on the proposed system.

Figure 6 illustrates the concept of the proposed algorithm.
The method described here employs the fact that the velocity
should be zero at each stationary point. At the stationary
point, calculated velocity of the proposed system and the hy-
pothesized velocity, i.e., zero velocity is compared to correct
the all the velocity history computed by the presented system.

Let us first assume that all error sources of the INS are
collectively accumulated in the calculated acceleration in the
navigation frame by e, (t)=1[es (¢) €4, () €4, @, 1f
one identifies the starting and ending instants ¢; and t, of the
system, known variables are V;(t) =0 and V,(t)=0.

If we model the errors in the calculated inertial frame ac-
celerations as constants ie., €4 (£) =€, t, then we have

Va (t)
€4 = 10
4, ty,—t 10
where €, = [, €4, €4.]7 is the constant error vector in

each axis of the inertial frame and V, = [V, Vi v..17 is
the computed velocity in the inertial frame using (5). It should
be noted that V() =0.

Analogously, if we model the acceleration etrors as
€4, t)= €4t, then parameters of the error model can be

identified as

o = _Valty)
A (ta—t,)

In either case, the histories of velocity and position are
simply corrected by

an

1. Compute A,
1 t
A"
VAAATY e
2. Integrate A, ,\ A 3. Compute approximate velocity error
N \ €,
and \ n
/ \
R Ve

4. Compensate V,

Fig. 6. Concept of the simplified ZVC
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t
Vo= V)~ [ ey, (ridtau

L 12
E=pw)- [ [ et
4y Yy

In order to apply the above described algorithm, the in-
stants when the system is stationary should be accurately
detected. In other words, we need an algorithm which extracts
only valid motion interval of signals from the whole interval
of measured signals. In this paper, the existence of the motion
of the system is detected by checking the root of squared
value of sum of angular rates [52].

mt)= { 1if \/wbz (7')2 + Wy, (7')2 + W, (7')22 Mins (13)
0 otherwise

where m (t) is the flag to denote the motion of the system
at time ¢ and m,, and ¢, are a priori determined thresholds.

The measure (13) can be experientially justified by the fact
that human arm movements usually involve translational mo-
tion and angular motion, which are measured by accel-
erometers and gyroscopes, respectively. In addition, we prefer
gyroscope signals to accelerometer signals since they are less
susceptible to the change of gravity.

The recovered motion information is three dimensional.
Rather than construct a recognition system to process three
dimensional motion information, we transform the motion in-
formation into the two dimensional information. This approach
has an advantage that current available recognition systems,
which assumes two dimension positional information as their
inputs, can be used without modification. In addition, most
users try to write on an imaginary two dimensional space al-
though they are asked to make gestures in the three dimen-
sional space [53, 54]. The algorithm proceeds as follows:

1) Solve the following matrix equation for ¢ and f3

m

m m
2
IR DI P
t=1 =1 _|i=1
m m - m

E T:Ys E y? Eyizi

i=1 i=1 i=1

14

where P, = (x;,v:,2 ), i = 1,2,---,m are points of the re-
covered three dimensional trajectory and m is the number of
points in the trajectory.

2) Determine a plane which has minimal z directional dis-
tance from points of trajectories

ax+by+cz=0 (15)

where a =, b= 4, and ¢ =~1.
3) Compute projected points P, , = (wi,p,yi.p, zi,p) on the
imaginary writing plane by

z,=x;—ka, y,=y —kb, and z,=2z—kc (16)
az; +by; + cz;
where k= —5—3%——
A+ +c

4) Compute 2D transformed points /P 5p by
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P, op=(x, 0080 + y; ,sindsing + z; ,sinfcosd,

;. 08¢ — 2; ,5in,0)

where

¢ = arctan2 (—b,—c)

8 = arctan2 (a, V0> + )
or

¢ = arctan2 (b,c)

6 = arctan2 (—a, Vb + %)

Figure 7 illustrates the proposed method.
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Fig. 7. lllustration of the overall algorithm

3.2. Method 2: Recovery of user’s handwriting motions
based on acceleration measurements only [55]

The motion tracking methods presented in the previous sec-
tions require 6 DOF inertial measurements, which need totally
five sensors in our study. Some real applications, however,
cannot provide enough space to install all of the sensors. For
example, if one tries to apply the proposed system to mobile
phones, he/she may find that it is very difficult to locate
enough space to install the five sensors. In this case, it is rea-
sonable to develop another simple but effective algorithm to
operate with least number of sensors. In this section, we pro-
pose a motion tracking algorithm with three acceleration meas-
urements only. With this method, the number of required sen-
sors is only two. The block diagram of the algorithm is de-
picted in Fig. 8. In the overall algorithm in Fig. 8, the estima-
tion part of the rotation angles (roll ¢, pitch 8, and yaw ) is
different from the algorithm in Fig. 7. The other parts of the
algorithm in Fig. 8 are identical with them in Fig. 7.

Empirically, we have found that the rotation angles (roll ¢,
pitch 8, and yaw ) do not change seriously during the ges-
ture input period. Based on the empirical observation, we pro-
pose a simple linear approximation method to estimate the ro-
tation angles with accelerometer only.
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Fig. 8. Block diagram of Method 2.

By (7) and (8), we can calculate roll and pitch when the
system does not move. If we assume that the system does not
move before and after gesture input, it is possible to estimate
roll and pitch angle by the following linear approximation
method:

ot)=at+b (18)
8(t) = ct +d (19)
where the constant a, b, ¢ and d is given as
= f(t?T):_f_@Q;b =—at; +¢(t;) (20)
2 1
IO CL IS PP S
t2 - tl

respectively. Using (18) and (19) we calculate roll ¢ and
pitch @ in the interval of gesture input. From the experiments,
we found that the yaw 1) angle did not affect the accuracy of
the motion tracking algorithm severely. Therefore, we fixed
9 = 0. The estimation algorithms are summarized as follows:

Piito=<t <1
ptYy=13at +bt, <t <ty

¢2:t2—<‘t < tc

O te<t <t
ftYy=3ct+dt;,<t <ty

0,1, <t < t,
Pit) =05ty <t <t,

@1, Pa, 6, and 6, are in (20) and (21),
and t, and ¢; are the starting and ending times of data acquis-

where constants

ition, respectively. We assume that there is no motion when ¢
is in t<t <1, and t,<t < ;.

Now we are in the position of applying INS equation (22)
since we have three acceleration measurements and three Euler
angles. It should be noted that governing equations for Euler
angles in (5) are removed in (22).

P’YI: I/n

I/n = q,Ab— G

(22)

3.3. Method 3: Recovery of user’s handwriting motions
based on two angular rate information

The presented algorithms in sections 3.1 and 3.2 recover



the real three dimensional movements of the system. However,
if we confine our interest within translating the user’s motion
into meaningful commands, i.e., gesture recognition, then the
positional information is not the only source for the purpose.

The system can provide many sets of information regarding
three dimensional movements such as acceleration and angular
rates shown in the body frame and attitude, acceleration, ve-
locity and position shown in the navigation frame, etc. The
signals should satisfy a variety of requirements for the
recognition. For example, features of signals from sensors
should not vary from person to person for a specific gesture
(low distinctiveness) while they provide good separability
among different gestures (high intra class variation).

T T —

Fig. 9. Simplified kinematics of human arm movement

Among various physical motion quantities, we select rota-
tion information as a good candidate gesture recognition since
most of human arm movements consist of circular motions
[56]. Thus, as shown in Fig. 9. In the figure, we know that
rotational movement is dominant while z directional movement
in the body frame is almost negligible. Therefore, we can
roughly map the x and y axis angular rates to virtual 2D
space as follows:

t
-P;t = f Wy (T)dT (23)
0

t
Py:f Wiy (r)dT
0

Figure 10 shows some exemplary motion profiles obtained
by (23) with reference gesture set to help readers to verify the
qualitative performance of the proposed scheme. In spite of
less physical motion information, it is enough for a recognizer
to classify different gestures. Detailed discussions of the per-
formance of the proposed method will be given in the later of
this paper.
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Fig. 10. Exemplary motion profiles by Method 3.

4. Recognition

After the construction of motion information, the actual rec-
ognition process is applied to it, which is based on Bayesian
network approach [57-59] for its high performance and robust-
ness to random disturbances. It can more explicitly model ba-
sic strokes and their relationship compared to the conventional
approaches such as template matching or hidden Markov
model. In this framework, Bayesian networks [60] are adopted
to probabilistically represent all the components and relation-
ships in gestures.

In order to implement Bayesian network based recognizer,
effective Bayesian network models of gestures are required. A
gesture can be viewed as an aggregation of strokes which rep-
resents a nearly straight part of the whole gesture trace.
Analogously, a stroke is regarded as a structural combination
of points which merely contain two dimensional position
information. Fig. 11 illustrates components of a gesture.

Bayesian network models relationship between components
as well as components themselves. A point is represented by a
two dimensional Gaussian distribution model, which
corresponds to a single node in the Bayesian network gesture
model. The stroke model is then constructed to reflect the
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Point N

Stroke 1 Stroke 2

Point 1

Stroke 3

Stroke 4

Fig. 11. Possible stroke segmentation for the number 2

point models and their inter relationships, i.e., within stroke
relationships (WSRs). WSRs describe the dependency of a mid
point from two specific points. Figure 12 illustrates the
concept of WSRs and the corresponding Bayesian network. In
Fig. 12, a stroke consists of two points ep, and ep;. A mid
point ip, is added and the resulting Bayesian network model

is constructed as shown in Fig. 12 (b).

€Po
@ (b)
Fig. 12. An example of WSR and its model using a Bayesian
network

One can construct a Bayesian network model for a stroke
as shown in Fig. 13 by recursively adding mid points and
constructing WSRs until covariances of newly added point
models are smaller than the predefined threshold.

The next step is to build a gesture model by merging
stroke models and so called inter stroke relationships (ISRs),
which describe writing sequence of strokes and dependencies

1. And two ending points of a stroke

2. Add a mid point ip1 and construct a network

Fig. 13. Recursive construction of a stroke model
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among end points of strokes. Fig. 14 shows the Bayesian net-
work based gesture model with four strokes and stroke re-
cursion depth of two, where EP,_, and EF, (i =1,2,---,4)
denote the beginning and ending point models for ith stroke,
1P, ; are internal point models for ith stroke, arcs between
EP;’s represent ISRs and incoming arcs to [P, ; describe
WSRs.

Stroke 3 ir: P’
B,

Stroke 4

iPaz epq

Gesture model
A

e

A T M IR
{IP1, 1) {fP21) W 1 WSR
P12 Qz( ><‘(le 3 {rs2 \l;;g Qpa% 1

P4,1
P4, 3)

\___\

Stroke 1

I
Stroke 2 Stroke 3

N—
Stroke 4

Fig. 14. Gesture model with 4 strokes and stroke recursion
depth of 2

Generally speaking, the training of the above described
Bayesian network involves two phases: structure determination
and parameter identification. The former is related to finding a
suitable structure of the Bayesian network, a proper recursion
depth of stroke models and the number of strokes for each
character. The latter is concerned with the adjustment of net-
work parameters such as conditional probability parameters. In
this paper, the structure of the Bayesian network is determined
by a designer’s a priori knowledge and parameters are identi-
fied by using the well known expectation and maximization
(EM) algorithm.

After training, each gesture class m has its own gesture
model BN, (m=1,2,---,N), where N is the number of
gestures. Two dimensional trajectory given by the presented
motion tracking algorithms is fed to the gesture model with
the form of sequence of points O(1),--, O(T). Then the
recognition problem is to find the gesture model BN" which
produces the highest model likelihood for all possible stroke
segmentations as follows:

BM:argmame(BMnlo( ) o
argmax"IP(B m )P( ( )

,0(T)) =
-, O(T)IBN,,)
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where



P(O1),-, 0(T)BN,) =

3 TIPEP = 0 )OG),+, Ot:_1))

vye€T i=1
N 2¢-1
HH P(]-Pi,j = ipi,j(O(tiq;ti ))|pa (IR]))
i=1j=1
and v= (ty, =, ty), tr=1<t, <-<ty= T is a stroke
segmentation instance, [ is the whole set of the possible
stroke segmentations, O(t;,t;) =(O0(t;), O@t;41),+, O(t;)),
N is the number of segments, d is the recursion depth and
pa(IP, ;) is the configuration of parent nodes from which
arcs come to /F.

5. Experiments

In the actual experiment, 7 users are guided to write twenty
four gestures defined in gesture set shown in Fig. 15. Each
gesture is drawn twelve times. Therefore, we have 240 ges-
tures per each user.

0 1, 1,
4 5 .

1
3

Y

CANCEL CIRCLECW

X

Fig. 15. Gesture set

~= Ul
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Z
G

DELETE

m
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Figure 16 illustrates the experiment procedure. As shown in
the figure, user first inputs predefined set of gestures, signals
of which are captured by data acquisition system and stored in
database. The database is qualitatively and quantitatively ana-
lyzed by GPIEE and the result is stored in the analysis
database. '

Gesture Inertial

Data Measurement
yser Acquisition File System
Inertial
Measurements
Analysis
Resuits
File System GPIEE

Fig. 16. Schematic diagram of the experimental environment
involving a user
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5.1. Method 1: Recovery of user’s handwriting motions
based on full 6 DOF inertial measurement

Typical position profiles estimated from the proposed sys-
tem with ZVC, are displayed in Fig. 17 along with reference
positions. Root mean of squared errors (RMSEs) of position
estimation with ZVC for X, ¥, and Z axis are 0.15175 (m),
0.09602 (m) and 0.04885 (m). Figure 18 shows three dimen-
sional view of the recovered trajectories. Tables 5 - 6 shows
RMSEs for each gesture and each user.
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Fig. 17. Comparison of the estimated 2D trajectories by the
proposed method (thick) and the reference 2D trajectories
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0 8 o 86 1 2 3
0 [}

= coaty L s i o e, oA 1
£ 5 ! = (% g Y g 39
N 5 € I E IS - 115
[EN- - 15 7 dz 13
12 1% %

Fig. 18. Comparison of the estimated 3D trajectories by the
proposed method (thick) and the reference 3D trajectories
(solid)

Table 5. RMSE of x axis for the motion tracking method with
full 6 DOF inertial measurements

RMSE User1 | User? User &
.09297| 0. o X I 0.05364 | _0.00437
0 05110 0. [ X XIVIE]

111
10556
13940
20507 | ¢
10125

Character 09515

[RANRAN
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Table 6. RMSE of y axis for the motion tracking method with Next, we apply recognition system to the recovered
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Fig. 19. Comparison of the estimated 2D trajectories by the
proposed method (thick) and the reference 2D trajectories
(solid)
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Table 10. RMSE of z axis for the motion tracking method
with 3 axis acceleration measurements
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Table. 11. Comparison of the proposed motion tracking al-
gorithms
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This section introduces a universal remote controller adopt-
ing the proposed input technology to show the possible appli-
Remark 1. The accuracy of the motion tracking and the  cations of inertial sensing input systems, which is called the

recognition rate of Method 2 is quite disappointing. However,
Method 2 is still appealing since accelerometers are usually
cheaper and smaller than gyroscopes. Therefore, we adopted
the sensor configuration of Method 2 in the commercialization
process and have taken different path to recognizer user’s
gestures. Due to security, we briefly mention that the recog-
nition rate is around 97.3 %.

5.3. Method 3: Recovery of user’s handwriting motions
based on two angular rate information

In this experiment only dual axis angular rate measurements
are used to track and recognize a user’s gesture. Since in-
tegration of gyroscope signals are only meaningful to recog-
nition, we provide recognition rate only, which is 99.8 % and
is acceptable for many commercial applications. Figure 21 il-
lustrates the estimated position profiles obtained by Method 3.
For the reader’s convenience, corresponding reference 2D tra-
jectories are also plotted.

Table 11 summarizes the comparison of characteristics of
three proposed algorithms.
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Fig. 21. Comparison of the estimated 2D trajectories by the
proposed method (solid) and the reference 2D trajectories
(dotted)

MagicWand [61].

Current universal remote controllers have many buttons and
users usually are frustrated when they try to control multiple
devices with the remote control system. In the perspective of
remote controlier, by replacing the current button rich remote
controller with our system, users can control home appliances
in very intuitive way. Besides the gesture recognition feature
of the proposed input technology, the menu navigation and se-
lection can be more comfortable since the proposed system is
used as an alternative form of mouse. In addition, the text en-
try function of the proposed system is very useful for the high
end digital TVs since many of them are equipped with inter-
net connectivity and they need some form of text entry. Other
remote controlling devices can perform same functions but our
approach has an advantage in the fact that increasing function
does not require increasing size of the device. Fig. 22 illus-
trates the conceptual usage scenario of the proposed gesture
input device applied to the field of remote controller. Figure
22 and 23 illustrate the overview and configuration of the
overall system.
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Fig. 22. Concept illustration of the gesture input device used
as a universal remote controller
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Fig. 23. MagicWand

The sensor configuration of the MagicWand is same with
that used for the previous gesture based input device. The
MagicWand is also equipped with a central processing unit for
stand alone operation and an infrared emitter to control ex-
ternal devices. Figure 24 shows the system configuration of
the MagicWand. Implementation of this specific example re-
quires only good recognition rate. Therefore, we pick out mo-
tion tracking method with two gyroscopes. Furthermore, we
utilize Fisher discriminant analysis (FDA) based recognizer in-
stead of the previously presented Bayesian network based
one due to inevitable memory limitation. However, the authors
believe that the change of recognizer does not corrupt the fun-
damental concept of gesture input with all inertial approach.
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Fig. 24. Hardware configuration of the MagicWand

7. Conclusions

In this paper, we proposed a gesture based input device
which is capable of capturing three dimensional motion. The
system is equipped with accelerometers and gyroscopes. The
sensors measure the inertial measurements, i.e., accelerations
and angular velocities produced by pen’s movement when a
user is writing on a plane surface or three dimensional space.
The gyroscope measurements are integrated to give orientation
of the system and consequently used to compensate the
accelerations. The compensated accelerations are doubly in-
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tegrated to yield the position of the system. With this ap-
proach, a user’s gesture inputs can be recovered without any
external sensors. We have proposed three motion tracking al-
gorithms to deal with various kinds of commercial
applications. A Bayesian network based recognition system has
been implemented for the proposed system. generate mean-
ingful information. The evaluation of the proposed system has
been conducted quantitatively and qualitatively. Position and
angular accuracy of the proposed system has been adopted for
the quantitative analysis while recognition rate has been uti-
lized to verify the qualitative performance of the system. From
the experiments, it has been shown that the performance of
the system is acceptable, which leads to a promising way of
commercialization of application of inertial sensing
technologies. The proposed method is successfully im-
plemented on an exemplary application system. Finally, it may
be stated that algorithms and systems presented in this paper
and other patents [62, 63] are partially applied to a commer-
cial product SCH S310 which is developed by Samsung
Electronics
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