• Title/Summary/Keyword: Motion and Time Study

Search Result 2,276, Processing Time 0.029 seconds

A Study on Measurement of Repetitive Work using Digital Image Processing (영상처리를 이용한 반복적 작업의 측정에 관한 연구)

  • Lee, Jeong-Cheol;Sim, Eok-Su;Kim, Nam-Joo;Park, Chan-Kwon;Park, Jin-Woo
    • IE interfaces
    • /
    • v.14 no.1
    • /
    • pp.95-105
    • /
    • 2001
  • Previous work measurement methods need much time and effort of time study analysts because they have to measure required time through direct observations. In this study, we propose a method which efficiently measures standard times without involvement of human analysts using digital image processing techniques. This method consists of two main steps: motion representation step and cycle segmentation step. In motion representation step, we first detect the motion of any object distinct from its background by differencing two consecutive images separated by a constant time interval. The images thus obtained then pass through an edge detector filter. Finally, the mean values of coordinates of significant pixels of the edge image are obtained. Through these processes, the motions of the observed worker are represented by two time series data of worker location in horizontal and vertical axes. In the second step, called the cycle segmentation step, we extract the frames which have maximum or minimum coordinates in one cycle and store them in a stack, and calculate each cycle time using these frames. In this step we also consider methods on how to detect work delays due to unexpected events such as operator's escapement from the work area, or interruptions. To condude, the experimental results show that the proposed method is very cost-effective and useful for measuring time standards for various work environment.

  • PDF

Selecting and scaling ground motion time histories according to Eurocode 8 and ASCE 7-05

  • Ergun, Mustafa;Ates, Sevket
    • Earthquakes and Structures
    • /
    • v.5 no.2
    • /
    • pp.129-142
    • /
    • 2013
  • Linear and nonlinear time history analyses have been becoming more common in seismic analysis and design of structures with advances in computer technology and earthquake engineering. One of the most important issues for such analyses is the selection of appropriate acceleration time histories and matching these histories to a code design acceleration spectrum. In literature, there are three sources of acceleration time histories: artificial records, synthetic records obtained from seismological models and accelerograms recorded in real earthquakes. Because of the increase of the number of strong ground motion database, using and scaling real earthquake records for seismic analysis has been becoming one of the most popular research issues in earthquake engineering. In general, two methods are used for scaling actual earthquake records: scaling in time domain and frequency domain. The objective of this study is twofold: the first is to discuss and summarize basic methodologies and criteria for selecting and scaling ground motion time histories. The second is to analyze scaling results of time domain method according to ASCE 7-05 and Eurocode 8 (1998-1:2004) criteria. Differences between time domain method and frequency domain method are mentioned briefly. The time domain scaling procedure is utilized to scale the available real records obtained from near fault motions and far fault motions to match the proposed elastic design acceleration spectrum given in the Eurocode 8. Why the time domain method is preferred in this study is stated. The best fitted ground motion time histories are selected and these histories are analyzed according to Eurocode 8 (1998-1:2004) and ASCE 7-05 criteria. Also, characteristics of both near fault ground motions and far fault ground motions are presented by the help of figures. Hence, we can compare the effects of near fault ground motions on structures with far fault ground motions' effects.

A Work Improvement Study by Motion-Time Analysis (동작시간분석에 의한 작업개선연구 -PCB조립작업을 사례로-)

  • 박성학
    • Journal of the Korean Professional Engineers Association
    • /
    • v.16 no.3
    • /
    • pp.33-40
    • /
    • 1983
  • This paper is one of the case studies to improve the labor productivity of PCB assembly through Work Factor motion-time analysis and the application of the motion economy principles and the human factors engineering theory. In result, we can improve 129% of the labor productivity by using a rotary table for the parts delivery. Therefore, it is expected that this result can be used for a lot of the manual works of the small and medium-sized industries especially.

  • PDF

Monitoring system for the wind-induced dynamic motion of 1/100-scale spar-type floating offshore wind turbine

  • Kim, C.M.;Cho, J.R.;Kim, S.R.;Lee, Y.S.
    • Wind and Structures
    • /
    • v.24 no.4
    • /
    • pp.333-350
    • /
    • 2017
  • Differing from the fixed-type, the dynamic motion of floating-type offshore wind turbines is very sensitive to wind and wave excitations. Thus, the sensing and monitoring of its motion is important to evaluate the dynamic responses to the external excitation. In this context, a monitoring system for sensing and processing the wind-induced dynamic motion of spar-type floating offshore wind turbine is developed in this study. It is developed by integrating a 1/00 scale model of 2.5MW spar-type floating offshore wind turbine, water basin equipped with the wind generator, sensing and data acquisition systems, real-time CompactRIO controller and monitoring program. The scale model with the upper rotatable blades is installed within the basin by means of three mooring lines, and its translational and rotational motions are detected by 3-axis inclinometer and accelerometers and gyroscope. The detected motion signals are processed using a real-time controller CompactRIO to calculate the acceleration and tilting angle of nacelle and the attitude of floating platform. The developed monitoring system is demonstrated and validated by measuring and evaluating the time histories and trajectories of nacelle and platform motions for three different wind velocities and for eight different fairlead positions.

Three-dimensional kinematic motion analysis of door handling task in people with mild and moderate stroke

  • Lee, Jung Ah;Kim, Eun Joo;Hwang, Pil Woo;Park, Han Ram;Bae, Jae Hyuk;Kim, Jae Nam
    • Physical Therapy Rehabilitation Science
    • /
    • v.5 no.3
    • /
    • pp.143-148
    • /
    • 2016
  • Objective: This study aimed to quantify one of the useful upper extremity movements to evaluate motor control abilities between the groups of people with mild and moderate arm impairments performing a door handling task. Design: Cross-sectional study. Methods: Twenty-one healthy participants and twenty-one persons with chronic stroke (9 mild stroke and 12 moderate stroke) were recruited for this study. Stroke participants were divided into 2 groups based on Fugle-Meyer Assessment scores of 58-65 (mild arm) and 38-57 (moderate arm). All they performed door handling task including the pronation and supination phases 3 times. We measured some movement factors which were reaction time, movement time, hand of peak velocity, hand of movement units to perform door handling task using the three-dimensional motion analysis. Results: The majority of kinematic variables showed significant differences among study groups (p<0.05). The reaction time, total and phase of movement time, hand of peak velocity, the number of movement units discriminated between healthy participants and persons with moderate upper limb stroke (p<0.05). In addition, reaction time, total and phase of movement time, the number of movement units discriminated between those with moderate and mild upper limbs of stroke patients (p<0.05). Conclusions: Three-dimensional kinematic motion analysis in this study was a useful tool for assessing the upper extremity function in different subgroups of people with stroke during the door handling task. These kinematic variables may help clinicians understand the arm movements in door handling task and consist of discriminative therapeutic interventions for stroke patients on upper extremity rehabilitation.

A Study on Motion Acceleration-Deceleration Time to Suppress Residual Vibration of Robot (로봇 잔류 진동 저감을 위한 모션 가감속 시간 설계 연구)

  • Kang, Han Sol;Chung, Seong Youb;Hwang, Myun Joong
    • The Journal of Korea Robotics Society
    • /
    • v.12 no.3
    • /
    • pp.279-286
    • /
    • 2017
  • In this paper, we proposed a method to determine the acceleration/deceleration time of the motion for reducing the residual vibration caused by the resonance of the robot in the high-speed motion. The relationship between the acceleration/deceleration time and the residual vibration was discussed for the trapezoidal velocity profile by analyzing the time when the jerk happens. The natural frequency of the robot can be estimated in advance through the dynamics simulation. The simulation and experiment for both cases where the moving distance of the robot is long enough and the distance is short, are implemented in the 1-DOF linear robot. Simulation and experimental results show that when the acceleration/deceleration time is a multiple of the vibration period, the settling time and the amplitude of the residual vibration become less than when the time is not a multiple.

Relationship between Oxidation and Wear of Ultra-High Molecular Weight Polyethylene for Total Joint Arthroplasty

  • Lee, Kwon-Yong
    • KSTLE International Journal
    • /
    • v.2 no.1
    • /
    • pp.55-58
    • /
    • 2001
  • The most widely-used orthopaedic grade polymer bearing liner material, ultrahigh molecular weight polyethylene (UHMWPE), for the total joint arthroplasty degrades after gamma-irradiation sterilization through the progressive oxidation in a shelf and in vivo. Oxidative degradation makes UHMWPE brittle and leads to decrease in mechanical properties. In this study the relationship between post-gamma-irradiation aging time and wear of UHMWPE was investigated. Six retrieved polyethylene hip liners implanted for 3-16 years and then stored in air for 1.5-6.5 years until tests were used. Two types of pin-on-disk wear testing were conducted by the uni-directional repeat pass rotating and by the linear reciprocating stainless steel disks against stationary polyethylene pins under 4Mpa at 1Hz with bovine serum lubrication in ambient environment. Wear of retrieved polyethylene hip liners does not have direct correlation with in vivo or total aging time. Linear reciprocal sliding motion generated more remarkable wear than uni-directional repeat pass sliding motion. It indicates that kinematic motion affects very crucially on the wear of aged UHMWPE having brittle white band region.

  • PDF

Modeling the Computer Aided Task Performance of Robots (컴퓨터 지원의 로봇 작업 수행도 모델링에 관한 연구)

  • Kwon, Gyu-Sik;Choi, Cheol;Kim, Geon-Hoe
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2001.04a
    • /
    • pp.182-187
    • /
    • 2001
  • This study deals with CARS (Computer Aided ROMUM System) which is a computer version of ROMUM (RObot Modularization of the Unit Motion). ROMUM was a method developed by the concept of modularization of the unit motion of robots. Because CARS is a computer assisted method of menu-driven type for human interface, this method can be easily applied for analyzing the work motion and measuring the execution time of robots. Therefore, it will be helpful for reducing the analysis effort and time of robot work.

  • PDF

Kinematic Analysis of Piked KOVACS Skill on the Horizontal Bars (철봉 몸 접어 KOVACS 기술동작의 운동학적 분석)

  • Lee, Yeong-Jong;Back, Jin-Ho;Chung, Jin-Soo
    • Korean Journal of Applied Biomechanics
    • /
    • v.16 no.2
    • /
    • pp.109-120
    • /
    • 2006
  • The purpose of this study was to examine the kinematical characteristics of gymnasts who can perform the KOVACS skill, and to grope for the better KOVACS Piked motion. The subjects were 3 male national gymnasts and were filmed with video cameras. And kinematic data were collected from the event of maximum knee flexion to the re-grasp the bar after airborne motion during KOVACS Piked motion. And the following conclusion were drawn; S1 took the enough time and inadequate height for performing KOVACS Piked motion. S2 showed the inadequate time and height during airborne motion with the large forward-backward and left-right movement. S3 showed the better KOVACS Piked movement among gymnasts, but the weak point of S3 was the large left-right shift. Based on the above conclusions, the gymnasts should be trained the enough time and height for the effective airborne movement and to reduce the left-right movement.

Real time Motion Graphics produce study of methods that use LED device (LED 장치를 응용한 실시간 모션그래픽스 구현방법에 관한 연구)

  • Lee, Min Young
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.7 no.1
    • /
    • pp.63-74
    • /
    • 2011
  • LED design works make user experience the conditions of time and space, and enable maximized spatial exploration and pursuit of ultimate sources. Light itself includes an ample dimension of time and, through the process of on and off, time-duration, similarity, and discontinuation is reorganized. LED design works make people experience the conditions of time and space, and enable maximized spatial exploration and pursuit of ultimate sources. LED design have been approached more from the viewpoint of material than from the viewpoint of aesthetics. LED based environmental design will be embedded deeply into our life with the technology of ubiquitous city. As the problem of the light intensity, tempo of change LED motion graphic and colors, substitutability is almost completely resolved now, LED is have more potentials than any other material as a tool of motion graphic. These result well make that using of LED is could be better useful from now on. In edition, users could be offered better beneficial lighting environment, and they will enjoy their better lives in the future.