• Title/Summary/Keyword: Motion and Time Study

Search Result 2,276, Processing Time 0.035 seconds

Study on Storytelling of VR Cartoons (VR 카툰의 스토리텔링 연구)

  • Yoo, Taekyung
    • Journal of Broadcast Engineering
    • /
    • v.23 no.1
    • /
    • pp.45-52
    • /
    • 2018
  • The virtual reality (VR) cartoon is a format of VR contents that leverage the characteristics of webtoons that provides the simple story line and graphical storytelling tools to strategically surmount limitations of VR contents design. The VR cartoon enables people to experience the imaginary three-dimensional space in the webtoon as a real space by the transformation of webtoon contents through VR prototyping. The VR cartoon successfully presents focused environment where people can readily pay attention to the contents without notable motion sickness. People have been familiar with the storytelling strategy in the context of published cartoons and webtoons, likely we've understood the narrative of a movie through the continuous scenes projected in the screen. Indeed, it has been recognized as a popular toolset of communication, where visual images are sequentially delivered by replacing multiple planar spaces to tell a story narrative. While there are discrete panels with the time and space resolution in the graphical cartoons, people can distill a commit closure based on their past experiences. This is a typical "grammar" of the cartoon, which can be extrapolated to the VR cartoon that provides a seminal storytelling strategy. In this article, we review how the storytelling strategy in webtoons has been transformed into that in VR cartoons, and analyze the key components of VR cartoons. We envision that our research can potentially create keystones to produce variety of new VR contents by reflecting various narrative media including cartoon as a 'sequential art'.

The Diagnostic Value of Dynamic US in the Extensor Tendon Dislocation at the Metacarpophalangeal Joint (중수지 관절부 신전건 탈구에서 실시간 표시 초음파의 진단적 가치)

  • Moon, Eun-Sun;Park, Yong-Cheol;Kim, Myung-Sun
    • The Journal of Korean Orthopaedic Ultrasound Society
    • /
    • v.1 no.1
    • /
    • pp.1-5
    • /
    • 2008
  • Purpose: We studied the diagnostic value of dynamic US in the extensor tendon dislocation at the metacarpophalangeal joint. Materials and Methods: From January 2007 to October, we studied 6 cases that had been diagnosed and followed over 5 months (2-10) in average. US examination using a 10-MHz linear transducer were performed in three cases. The causes of dislocations were traumatic in 5 cases and congenital in one case. Results: In only 3 cases which could not be diagnosed clinically, we performed US. In dynamic US, all three cases showed the extensor tendon dislocation evidently. Operative findings were sagittal band rupture in 4 cases, capsular loosening in one case and sagittal band thinning in one case. Sagittal band repair was performed in 4 cases and capsular augmentation in one case. In case of congenital dislocation showing 4 digital extensor tendon dislocations in right hand, we operated only the second extensor by sagittal band repair with augmentation by looping. At last follow-up, no case showed recurrence or limitation of motion. Conclusion: In case of extensor tendon dislocation without apparent clinical finding, US with dynamic study has so great value that it can detect the dislocation in real time, which is superior to MRI.

  • PDF

Comparison of Methods Predicting VS30 from Shallow VS Profiles and Suggestion of Optimized Coefficients (얕은 심도 VS주상도를 활용한 VS30 예측 방법론 비교 및 최적 계수 제시)

  • Choi, Inhyeok;Kwak, Dongyoup
    • Journal of the Korean Geotechnical Society
    • /
    • v.36 no.3
    • /
    • pp.15-23
    • /
    • 2020
  • Ground motion models predicting intensity measures on surface use a time-averaged shear wave velocity, VS30, as a key variable simulating site effect. The VS30 can be directly estimated from VS profiles if the profile depth (z) is greater than or equal to 30 m. However, some sites have VS profiles with z < 30 m. In this case VS30 can be predicted using extension models. This study proposes new coefficient sets for existing prediction equations using 297 Korea VS profiles. We have collected VS profiles from KMA and Geoinfo database. Fitting six existing methods to data, we suggest new coefficients for each method and evaluate their performance. It turns out that if z ≥ 15 m, the standard deviation (σ) of residual in log10 is 0.061, which indicates that the estimated VS30 is nearly accurate. If z < 15 m, the σ keeps increasing up to 0.1 for z = 5 m, so we caution the use of models at very low z. Nonetheless, we recommend investigating up to 30 m depth for VS30 calculation if possible.

Comparison of Approximate Nonlinear Methods for Incremental Dynamic Analysis of Seismic Performance (내진성능의 증분동적해석을 위한 비선형 약산법의 비교 검토)

  • Bae, Kyeong-Geun;Yu, Myeong-Hwa;Kang, Pyeong-Doo;Kim, Jae-Ung
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.12 no.1
    • /
    • pp.79-87
    • /
    • 2008
  • Seismic performance evaluation of structure requires an estimation of the structural performance in terms of displacement demand imposed by earthquakes on the structure. Incremental Dynamic Analysis(IDA) is a analysis method that has recently emerged to estimate structural performance under earthquakes. This method can obtained the entire range of structural performance from the linear elastic stage to yielding and finally collapse by subjecting the structure to increasing levels of ground acceleration. Most structures are expected to deform beyond the limit of linearly elastic behavior when subjected to strong ground motion. The nonlinear response history analysis(NRHA) among various nonlinear analysis methods is the most accurate to compute seismic performance of structures, but it is time-consuming and necessitate more efforts. The nonlinear approximate methods, which is more practical and reliable tools for predicting seismic behavior of structures, are extensively studied. The uncoupled modal response history analysis(UMRHA) is a method which can find the nonlinear reponse of the structures for ESDF from the pushover curve using NRHA or response spectrum. The direct spectrum analysis(DSA) is approximate nonlinear method to evaluate nonlinear response of structures, without iterative computations, given by the structural linear vibration period and yield strength from the pushover analysis. In this study, the practicality and the reliability of seismic performance of approximate nonlinear methods for incremental dynamic analysis of mixed building structures are to be compared.

Comparison Study between Myocardial Velocity obtained from Gated Myocardial SPECT and Myocardial Functional indices with a Focus on Myocardial Perfusion (게이트 심근 관류 SPECT에서 구한 심근 속도와 심근 관류를 중심으로 한 심근 기능 지표와의 비교연구)

  • Ha, Jung-Min;Jeong, Shin-Young;Bom, Hee-Seung;Lee, Byeong-Il
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.43 no.5
    • /
    • pp.386-394
    • /
    • 2009
  • Purpose: We aimed to assess the myocardial velocity on gated myocardial perfusion SPECT (gated MPS), to compare myocardial velocity between patients without coronary artery disease (CAD) and CAD patients and to assess the correlation of myocardial velocity and perfusion and wall thickening on CAD group. Materials and Methods: Seventeen patients without CAD (M:F=9:8, mean age $61.8{\pm}11.1$ yrs: group A) and thirty-nine patients with CAD (M:F=18:21, mean age $66.9{\pm}8.1$ yrs : group B) had undergone one-day adenosine stress gated MPS. In twenty segment model, 12 segments (except apical and basal segments) of each patient were included. We obtained systolic and diastolic gate ratio in left ventricular volume curve by eight frames per cardiac cycle on gated MPS. Using the systolic and diastolic gate ratio and R-R time of each patient, we obtained systolic and diastolic time ratio. The myocardial velocity was defined as wall thickening over systolic or diastolic time. Results: We presented normal range of myocardial velocities according segments and territories of coronary artery. The myocardial velocity of group B was significantly lower than group A (p=0.00). There was no significant difference between the myocardial velocity of group B with preserved EF and group A. The stress systolic velocity significantly correlated with regional myocardial perfusion in group B with preserved EF (p=0.00) as well as decreased EF (p=0.01). In group B, stress perfusion of segments which had decreased wall thickening and decreased myocardial velocity was significantly lower than segments which had decreased wall thickening and preserved myocardial velocity (p=0.01). Conclusion: The new functional index of velocity will be used as an useful of gated MPS.

Evaluation of the Positional Uncertainty of a Liver Tumor using 4-Dimensional Computed Tomography and Gated Orthogonal Kilovolt Setup Images (사차원전산화단층촬영과 호흡연동 직각 Kilovolt 준비 영상을 이용한 간 종양의 움직임 분석)

  • Ju, Sang-Gyu;Hong, Chae-Seon;Park, Hee-Chul;Ahn, Jong-Ho;Shin, Eun-Hyuk;Shin, Jung-Suk;Kim, Jin-Sung;Han, Young-Yih;Lim, Do-Hoon;Choi, Doo-Ho
    • Radiation Oncology Journal
    • /
    • v.28 no.3
    • /
    • pp.155-165
    • /
    • 2010
  • Purpose: In order to evaluate the positional uncertainty of internal organs during radiation therapy for treatment of liver cancer, we measured differences in inter- and intra-fractional variation of the tumor position and tidal amplitude using 4-dimentional computed radiograph (DCT) images and gated orthogonal setup kilovolt (KV) images taken on every treatment using the on board imaging (OBI) and real time position management (RPM) system. Materials and Methods: Twenty consecutive patients who underwent 3-dimensional (3D) conformal radiation therapy for treatment of liver cancer participated in this study. All patients received a 4DCT simulation with an RT16 scanner and an RPM system. Lipiodol, which was updated near the target volume after transarterial chemoembolization or diaphragm was chosen as a surrogate for the evaluation of the position difference of internal organs. Two reference orthogonal (anterior and lateral) digital reconstructed radiograph (DRR) images were generated using CT image sets of 0% and 50% into the respiratory phases. The maximum tidal amplitude of the surrogate was measured from 3D conformal treatment planning. After setting the patient up with laser markings on the skin, orthogonal gated setup images at 50% into the respiratory phase were acquired at each treatment session with OBI and registered on reference DRR images by setting each beam center. Online inter-fractional variation was determined with the surrogate. After adjusting the patient setup error, orthogonal setup images at 0% and 50% into the respiratory phases were obtained and tidal amplitude of the surrogate was measured. Measured tidal amplitude was compared with data from 4DCT. For evaluation of intra-fractional variation, an orthogonal gated setup image at 50% into the respiratory phase was promptly acquired after treatment and compared with the same image taken just before treatment. In addition, a statistical analysis for the quantitative evaluation was performed. Results: Medians of inter-fractional variation for twenty patients were 0.00 cm (range, -0.50 to 0.90 cm), 0.00 cm (range, -2.40 to 1.60 cm), and 0.00 cm (range, -1.10 to 0.50 cm) in the X (transaxial), Y (superior-inferior), and Z (anterior-posterior) directions, respectively. Significant inter-fractional variations over 0.5 cm were observed in four patients. Min addition, the median tidal amplitude differences between 4DCTs and the gated orthogonal setup images were -0.05 cm (range, -0.83 to 0.60 cm), -0.15 cm (range, -2.58 to 1.18 cm), and -0.02 cm (range, -1.37 to 0.59 cm) in the X, Y, and Z directions, respectively. Large differences of over 1 cm were detected in 3 patients in the Y direction, while differences of more than 0.5 but less than 1 cm were observed in 5 patients in Y and Z directions. Median intra-fractional variation was 0.00 cm (range, -0.30 to 0.40 cm), -0.03 cm (range, -1.14 to 0.50 cm), 0.05 cm (range, -0.30 to 0.50 cm) in the X, Y, and Z directions, respectively. Significant intra-fractional variation of over 1 cm was observed in 2 patients in Y direction. Conclusion: Gated setup images provided a clear image quality for the detection of organ motion without a motion artifact. Significant intra- and inter-fractional variation and tidal amplitude differences between 4DCT and gated setup images were detected in some patients during the radiation treatment period, and therefore, should be considered when setting up the target margin. Monitoring of positional uncertainty and its adaptive feedback system can enhance the accuracy of treatments.

A Study on the Development of High Sensitivity Collision Simulation with Digital Twin (디지털 트윈을 적용한 고감도 충돌 시뮬레이션 개발을 위한 연구)

  • Ki, Jae-Sug;Hwang, Kyo-Chan;Choi, Ju-Ho
    • Journal of the Society of Disaster Information
    • /
    • v.16 no.4
    • /
    • pp.813-823
    • /
    • 2020
  • Purpose: In order to maximize the stability and productivity of the work through simulation prior to high-risk facilities and high-cost work such as dismantling the facilities inside the reactor, we intend to use digital twin technology that can be closely controlled by simulating the specifications of the actual control equipment. Motion control errors, which can be caused by the time gap between precision control equipment and simulation in applying digital twin technology, can cause hazards such as collisions between hazardous facilities and control equipment. In order to eliminate and control these situations, prior research is needed. Method: Unity 3D is currently the most popular engine used to develop simulations. However, there are control errors that can be caused by time correction within Unity 3D engines. The error is expected in many environments and may vary depending on the development environment, such as system specifications. To demonstrate this, we develop crash simulations using Unity 3D engines, which conduct collision experiments under various conditions, organize and analyze the resulting results, and derive tolerances for precision control equipment based on them. Result: In experiments with collision experiment simulation, the time correction in 1/1000 seconds of an engine internal function call results in a unit-hour distance error in the movement control of the collision objects and the distance error is proportional to the velocity of the collision. Conclusion: Remote decomposition simulators using digital twin technology are considered to require limitations of the speed of movement according to the required precision of the precision control devices in the hardware and software environment and manual control. In addition, the size of modeling data such as system development environment, hardware specifications and simulations imitated control equipment and facilities must also be taken into account, available and acceptable errors of operational control equipment and the speed required of work.

The Problem of Theodicy in Daesoon Jinrihoe (대순진리회에서 신정론 문제)

  • Cha, Seon-keun
    • Journal of the Daesoon Academy of Sciences
    • /
    • v.33
    • /
    • pp.257-286
    • /
    • 2019
  • This study aims to explain theodicy in Daesoon Jinrihoe using established theodicies. Theodicy in Daesoon Jinrihoe can be described as follows: within the worldview of Daesoon Jinrihoe, the problems of evil and suffering are better addressed by analyzing the problem of mutual contention. Accordingly, theodicy in Daesoon Jinrihoe is a matter which should be discussed only in regards to the time period known as the Former World and the transition period after the Reordering Works that leads up to the Later World. The Later World does not operate under patterns of mutual contention. Consequently, there will be no suffering. Therefore, issues of theodicy are irrelevant in the Later World. Theodicy should be dealt differently as it pertains to the Former World and the previously mentioned transition period. Daesoon Thought posits that there is an underlying principle presides over the cosmos, and the divine beings act in accordance with it and perform specific duties in their own subdivisions. The cosmic principle is able to contain cycles of both Sanggeuk ('mutual destruction' in general usage, but 'mutual contention' in Daesoon Thought related to the Former World) and sangsaeng ('mutual generation' in general usage and 'mutual beneficence' in Daesoon Thought related to the Later World). Suffering came into being due to mutual contention. However, mutual contention was not set into motion maliciously, but was arranged instead to facilitate the realization of greater values such as growth and development. In other words, mutual contention are not products of a moral value the nature of which is bad or wrong. Yet, since the world has operated under mutual contention from time immemorial, a nearly incalculably vast multitude of grievances have accumulated. In addition, the divine beings who had operated under mutual contention often made mistakes and spread confusion. This extreme situation resulted in tremendous disasters breaking out all over the world. Perhaps this particular theodicy could be named "Dualistic Sanggeuk Theology (Dualistic Theodicy of Mutual Contention)." After the divine beings reported to the Supreme God that the world had fallen into a serious crisis, the Supreme God penetratingly examined the circumstances of the world and then descended to Earth as a human being named Jeungsan. As Jeungsan practiced the Reordering Works of Heaven and Earth, the Great Opening was preordained by Him. As a result, the transition period started, and from that point onward, theodicy should be described differently. It is presumed that all creatures will be judged at the time of the Great Opening. This will result in the annihilation of all wicked beings including both divine beings and humans. There will also be the establishment of an earthly paradise as well as grievance resolution for all beings prior the Great Opening. This can also be called "The Eschatological Theodicy of the Resolution of Grievances." Theodicy in Daesoon Jinrihoe adopts the two theodicies mentioned above. In addition to that, various theodicies from other traditions such as Irenaean ("soul-making") Theodicy, Free Will Theodicy, Recompense Theodicy, Afterlife Theodicy, Karma Samsara Theodicy, theodicy of participation, and Communion Theodicy can all potentially be applied on a case by case basis.

A Study on the Digital Holographic Image Acquisition Method using Chroma Key Composition (크로마키 합성을 이용한 디지털 홀로그래피 이미지 획득 방법 연구)

  • Kim, Ho-sik;Kwon, Soon-chul;Lee, Seung-hyun
    • The Journal of the Convergence on Culture Technology
    • /
    • v.8 no.3
    • /
    • pp.313-321
    • /
    • 2022
  • As 5G is getting developed, people are getting interested in immersive content. Some predicts that immersive content may be implemented in real life such as holograms, which were only possible in movies. Holograms, which has been studied for a long time since Dennis Gabor published the basic theory in 1948, are constantly developing in a new direction with digital technology. It is developing from a traditional optical hologram, which is produced by recording the interference pattern of light to a computer generated hologram (CGH) and a digital hologram printer. In order to produce a hologram using a digital hologram printer, holographic element (Hogel) image must first be created using multi-view images. There are a method of directly photographing an actual image and a method of modeling an object using 3D graphic production tool and rendering the motion of a virtual camera to acquire a series of multi-view images. In this paper, we propose a new method of getting image, which is one of the visual effect, VFX, producing multi-view images using chroma key composition. We shoot on the green screen of actual object, suggest the overall workflow of composition with 3D computer graphic(CG) and explain the role of each step. We expected that it will be helpful in researching a new method of image acquisition in the future if all or part of the proposed workflow to be applied.

Evaluation of Near Subsurface 2D Vs Distribution Map using SPT-Uphole Tomography Method (SPT-업홀 토모그래피 기법을 이용한 지반의 2차원 전단파 속도 분포의 도출)

  • Bang, Eun-Seok;Kim, Jong-Tae;Kim, Dong-Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.3C
    • /
    • pp.143-155
    • /
    • 2006
  • SPT-Uphole tomography method was introduced for the evaluation of near subsurface shear wave velocity (Vs) distribution map. In SPT-Uphole method, SPT (Standard Penetration Test) which is common in geotechnical site investigation was used as a source and several surface geophones in line were used as receivers. Vs distribution map which is the triangular shape around the boring point can be developed by tomography inversion. To obtain the exact travel time information of shear wave component, a procedure using the magnitude summation of vertical and horizontal components was used based on the evaluation of particle motion at the surface. It was verified that proposed method could give reliable Vs distribution map through the numerical study using the FEM (Finite Element Method) model. Finally, SPT-Uphole tomography method was performed at the weathered soil site where several boring data with SPT-N values are available, and the feasibility of proposed method was verified in the field.