• Title/Summary/Keyword: Motion Study

Search Result 9,801, Processing Time 0.041 seconds

The Analysis of the Stock Price Time Series using the Geometric Brownian Motion Model (기하브라우니안모션 모형을 이용한 주가시계열 분석)

  • 김진경
    • The Korean Journal of Applied Statistics
    • /
    • v.11 no.2
    • /
    • pp.317-333
    • /
    • 1998
  • In this study, I employed the autoregressive model and the geometric Brownian motion model to analyze the recent stock prices of Korea. For all 7 series of stock prices(or index) the geometric Brownian motion model gives better predicted values compared with the autoregressive model when we use smaller number of observations.

  • PDF

ANALYSIS OF SLIDING MOTION OF PILED MULTI-BLOCK SYSTEMS CONSIDERING HORIZONTAL ROTATION (적층 강체블록의 수직축 회전을 고려한 Sliding운동 해석과 실험)

  • 황인섭;김재관
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2003.03a
    • /
    • pp.193-199
    • /
    • 2003
  • The most cultural heritages are composed of piled multi-block systems which are vulnerable to earthquakes. The stone of low height tends to slide when the excitation such as earthquake is applied and this sliding motion has effects on the whole response of the structure. In this study, analytical method of sliding motion of the piled multi-block systems considering horizontal rotation is developed and compared with shaking table test results. It is shown that the nonlinear analysis of sliding motion of multi-block system leads to satisfactory results.

  • PDF

A Study on Comparing algorithms for Boxing Motion Recognition (권투 모션 인식을 위한 알고리즘 비교 연구)

  • Han, Chang-Ho;Kim, Soon-Chul;Oh, Choon-Suk;Ryu, Young-Kee
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.8 no.6
    • /
    • pp.111-117
    • /
    • 2008
  • In this paper, we describes the boxing motion recognition which is used in the part of games, animation. To recognize the boxing motion, we have used two algorithms, one is principle component analysis, the other is dynamic time warping algorithm. PCA is the simplest of the true eigenvector-based multivariate analyses and often used to reduce multidimensional data sets to lower dimensions for analysis. DTW is an algorithm for measuring similarity between two sequences which may vary in time or speed. We introduce and compare PCA and DTW algorithms respectively. We implemented the recognition of boxing motion on the motion capture system which is developed in out research, and depict the system also. The motion graph will be created by boxing motion data which is acquired from motion capture system, and will be normalized in a process. The result has implemented in the motion recognition system with five actors, and showed the performance of the recognition.

  • PDF

Compensation of Five DOF Motion Errors in a Ultra Precision Hydrostatic Table Using the Active Controlled Capillaries (능동제어모세관을 이용한 초정밀 유정압테이블의 5 자유도 운동 오차 보정)

  • Park C.H.;Oh Y.J.;Lee H.;Lee D.W.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.769-772
    • /
    • 2005
  • Five DOF motion errors of a hydrostatic bearing table driven by the coreless type linear motor were compensated utilizing the active controlled capillaries in this study. Horizontal linear motion and yaw error were simultaneously compensated using two active controlled capillaries and vertical linear motion, pitch and yaw error were also simultaneously compensated using three active controlled capillaries. By the compensation, horizontal linear motion accuracy and yaw were improved from 0.16 ${\mu}m$ and 1.96 arcsec to 0.02 ${\mu}m$ and 0.03 arcsec. Vertical linear motion accuracy, pitch and roll were also largely improved from 0.18 ${\mu}m$, 2.26 arcsec and 0.14 arcsec upto 0.03 ${\mu}m$, 0.07 arcsec and 0.02 arcsec. The compensated motion errors were within the range of measuring repeatability which was ${\pm}0.02\;{\mu}m$ in the linear motion and ${\pm}0.05$ arcsec in the angular motion. From these results, it is found that the motion error compensation method utilizing the active controlled capillaries are very effective to improve the five motion accuracies of the hydrostatic bearing tables.

  • PDF

Dosimetric Analysis on the Effect of Target Motion in the Delivery of Conventional IMRT, RapidArc and Tomotherapy

  • Song, Ju-Young
    • Progress in Medical Physics
    • /
    • v.28 no.4
    • /
    • pp.164-170
    • /
    • 2017
  • One of the methods to consider the effect of respiratory motion of a tumor target in radiotherapy is to establish a treatment plan with the internal target volume (ITV) created based on an accurate analysis of the target motion displacement. When this method is applied to intensity modulated radiotherapy (IMRT), it is expected to yield a different treatment dose distribution under the motion condition according to the IMRT method. In this study, we prepared ITV-based IMRT plans with conventional IMRT using fixed gantry angle beams, RapidArc using volumetric modulated arc therapy, and tomotherapy using helical therapy. Then, the variation in dose distribution caused by the target motion was analyzed by the dose measurement in the actual motion condition. A delivery quality assurance plan was prepared for the established IMRT plan and the dose distribution in the actual motion condition was measured and analyzed using a two-dimensional diode detector placed on a moving phantom capable of simulating breathing movements. The dose measurement was performed considering only a uniform target shape and motion in the superior-inferior (SI) direction. In this condition, it was confirmed that the error of the dose distribution due to the target motion is minimum in tomotherapy. This is thought to be due to the characteristic of tomotherapy that treats the target sequentially by dividing it into several slices. When the target shape is uniform and the main target motion direction is SI, it is considered that tomotherapy for the ITV-based IMRT method has a characteristic which can reduce the dose difference compared with the plan dose under the target motion condition.

Kinematical Analysis of Fastball and Longtoss during Baseball Throwing (투구시 속구와 멀리던지기 동작의 운동학적 비교분석)

  • Woo, Byung-Hoon;Jung, Yun-Jin
    • Korean Journal of Applied Biomechanics
    • /
    • v.19 no.3
    • /
    • pp.425-433
    • /
    • 2009
  • The purpose of this study was to investigate relation between fastball motion and longtoss motion, and the kinematical analysis using APAS(Ariel Performance Analysis System). Eight people(age: $21.2{\pm}3.6years$, height: $177.1{\pm}3.1cm$, weight $68.6{\pm}2.5kg$) participated in the experiment. Followings are the conclusion. In displacement of fore-aft on COG(Center of Gravity), fastball motion moved more forward than longtoss motion. In displacement of vertical on COG(Center of Gravity), fastball motion was lower than longtoss motion In velocity of right hand, greater release velocity was measured for fastball motion than for longtoss motion. In displacement of elbow and shoulder joint, more extended displacement was exhibited in fastball motion than longtoss motion. In displacement of trunk tilt, fastball motion showed foreward tilt, longtoss motion showed backward tilt. In stride, fastball showed longer than longtoss.

Preservation of Motion at the Surgical Level after Minimally Invasive Posterior Cervical Foraminotomy

  • Lee, Young-Seok;Kim, Young-Baeg;Park, Seung-Won;Kang, Dong-Ho
    • Journal of Korean Neurosurgical Society
    • /
    • v.60 no.4
    • /
    • pp.433-440
    • /
    • 2017
  • Objective : Although minimally invasive posterior cervical foraminotomy (MI-PCF) is an established approach for motion preservation, the outcomes are variable among patients. The objective of this study was to identify significant factors that influence motion preservation after MI-PCF. Methods : Forty-eight patients who had undergone MI-PCF between 2004 and 2012 on a total of 70 levels were studied. Cervical parameters measured using plain radiography included C2-7 plumb line, C2-7 Cobb angle, T1 slope, thoracic outlet angle, neck tilt, and disc height before and 24 months after surgery. The ratios of the remaining facet joints after MI-PCF were calculated postoperatively using computed tomography. Changes in the distance between interspinous processes (DISP) and the segmental angle (SA) before and after surgery were also measured. We determined successful motion preservation with changes in DISP of ${\leq}3mm$ and in SA of ${\leq}2^{\circ}$. Results : The differences in preoperative and postoperative DISP and SA after MI-PCF were $0.03{\pm}3.95mm$ and $0.34{\pm}4.46^{\circ}$, respectively, fulfilling the criteria for successful motion preservation. However, the appropriate level of motion preservation is achieved in cases in which changes in preoperative and postoperative DISP and SA motions are 55.7 and 57.1%, respectively. Based on preoperative and postoperative DISP, patients were divided into three groups, and the characteristics of each group were compared. Among these, the only statistically significant factor in motion preservation was preoperative disc height (Pearson's correlation coefficient=0.658, p<0.001). The optimal disc height for motion preservation in regard to DISP ranges from 4.18 to 7.08 mm. Conclusion : MI-PCF is a widely accepted approach for motion preservation, although desirable radiographic outcomes were only achieved in approximately half of the patients who had undergone the procedure. Since disc height appears to be a significant factor in motion preservation, surgeons should consider disc height before performing MI-PCF.

A Study on Architecture of Motion Compensator for H.264/AVC Encoder (H.264/AVC부호화기용 움직임 보상기의 아키텍처 연구)

  • Kim, Won-Sam;Sonh, Seung-Il;Kang, Min-Goo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.3
    • /
    • pp.527-533
    • /
    • 2008
  • Motion compensation always produces the principal bottleneck in the real-time high quality video applications. Therefore, a fast dedicated hardware is needed to perform motion compensation in the real-time video applications. In many video encoding methods, the frames are partitioned into blocks of Pixels. In general, motion compensation predicts present block by estimating the motion from previous frame. In motion compensation, the higher pixel accuracy shows the better performance but the computing complexity is increased. In this paper, we studied an architecture of motion compensator suitable for H.264/AVC encoder that supports quarter-pixel accuracy. The designed motion compensator increases the throughput using transpose array and 3 6-tap Luma filters and efficiently reduces the memory access. The motion compensator is described in VHDL and synthesized in Xilinx ISE and verified using Modelsim_6.1i. Our motion compensator uses 36-tap filters only and performs in 640 clock-cycle per macro block. The motion compensator proposed in this paper is suitable to the areas that require the real-time video processing.

A study on the effect of virtual reality operations on cyber motion sickness (가상현실(VR)에서 조작행위가 사이버멀미에 미치는 영향)

  • Ko, Yun-Seo;Han, Jung-Wan
    • Journal of Digital Convergence
    • /
    • v.18 no.6
    • /
    • pp.451-457
    • /
    • 2020
  • In this study, the degree of motion sickness displayed according to actions in virtual reality is measured based on the SSQ tool, a measuring tool, and factors and symptoms affecting cyber motion sickness are investigated through comparative analysis. In the first experiment, the operation method experiment, the simple operation method is measured to be highly affected by the Nausea factor. As symptoms of this, nausea, burp and headache symptoms were developed. In the second experiment, the larger the body rotation radius, the higher the motion sickness was measured, and the greater the influence of Nausea factors. Symptoms of this were the symptoms of burping, headaches, and a full head. In the third experiment, the physical mobility experiment, motion sickness was measured highly in the non-action controller. It was measured to be greatly affected by the Nausea factor. Symptoms of this include fever, headache, and a full head. Through this study, we found that the more fixed and simple the body is operated in virtual reality, the more sensitive the user is to motion sickness, and the larger the radius of rotation, the more sensitive it is to motion sickness. This study is meaningful in identifying factors and symptoms that affect motion sickness and VR manipulation, and is expected to be used by developers in the future to recognize the degree and symptoms of motion sickness of users and to develop content.

Influence of Interferential Current Therapy and Laser Therapy on Functional Recovery after Total Knee Replacement

  • Oh, Seung-Keun;Kim, Yong-Nam
    • The Journal of Korean Physical Therapy
    • /
    • v.26 no.3
    • /
    • pp.175-181
    • /
    • 2014
  • Purpose: The purpose of this study is to investigate the effects of interference current therapy and laser therapy on functional recovery after total knee arthroplasty by measuring the Berg balance scale and range of motion. Methods: Subjects were 30 patients who were admitted to G Hospital after total knee arthroplasty. They were randomly assigned to experimental group I in which interference current therapy was applied (n=10), experimental group II in which laser therapy was applied (n=10), or the control group (n=10). The Berg balance scale and range of motion of the subjects were measured before, after 2 weeks, and after 4 weeks of therapy. Results: There was a statistically significant change (p<0.05) in the Berg balance scale and range of motion before and after therapy intervention among the laser therapy group and the interference current therapy group. There was also a significant change between the groups in the Berg balance scale and range of motion. Tukey's post hoc comparison showed a statistically significant difference between the control group and experimental group I and between the control group and experimental group II (p<0.05). Conclusion: The application of interference current therapy and laser therapy resulted in a significant change in both the Berg balance scale and range of motion among patients with total knee arthroplasty. The findings of this study can be used as preliminary clinical data in evaluating functional recovery in patients with total knee arthroplasty in a post-clinic setting.