• Title/Summary/Keyword: Mooring problem

Search Result 34, Processing Time 0.028 seconds

A Heuristic Algorithm of Berth Assignment Planning in a Container Terminal (발견적 알고리즘에 의한 컨테이너 터미널의 선석배정에 관한 연구)

  • Lee, H.G.;Lee, C.Y.
    • Journal of Korean Port Research
    • /
    • v.9 no.2
    • /
    • pp.1-8
    • /
    • 1995
  • Generally, berth assignment problem has conflicting factors according to the interested parties. In the view of shipping company, it is desirable that berth assignment is made according to the order of arrival. But in the view of port operator, it is better to be assigned regardless the order of arrival to promote the efficiency of berth operation. Thus, it is necessary to establish berth assignment planning which reflects both of interests in a practical situation. This paper aims to develop a reasonable berth assignment algorithm in a container terminal by considering the prescribed factors, and suggests three types of models minimizing the objective functions such as total port staying time, total mooring time and total maximum mooring time by using MPS concept. These models are formulated by 0-1 integer programming and min-max type function, but as the number of variables increases, an optimal solution cannot be achieved easily within a desired computational time. Thus, to tackle this problem this paper proposes a heuristic algorithm, and also the heuristic algorithm proposed in this paper is verified through the several examples.

  • PDF

Experimental Study on Interaction of Side-by-Side Moored Vessels (병렬계류 선박의 동유체력 상호간섭에 관한 실험연구)

  • Kim, Jin-Ha;Hong, Sa-Young;Cho, Seok-Gyo;Choi, Yoon-Rak;Song, Myong-Jae;Kim, Duk-Su
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.208-213
    • /
    • 2003
  • Recently, Side-by-side mooring system of LNG FPSO and shuttle tanker is one of hot issues in offshore floating body dynamics, which requires accurate analysis of hydrodynamic interactions between side by side moored LNG FPSO and shuttle tanker than tandem moored vessels. This paper aims to investigate basic interaction characteristics of side-by-side moored multiple vessels both numerically and experimentally. A higher-order boundary element method combined with generalized nwde approach will be applied to analysis of motion and drift force of side by side moored multiple-body. Model tests were carried out for the same multiple floating bodies in regular and irregular waves. Motion responses and drift forces of vessels for two mooring situation(coupled & uncoupled) were compared with those of calculations. Discussions will be highlighted on applicability of numerical method to prediction of sophisticated multi-body interaction problem of which motion behavior is very important to analysis of mooring dynamics of deep sea floating bodies.

  • PDF

Study on the Dynamic Behavior Characteristics of an Earthquake in a Crane Pile Mooring Facility (크레인 말뚝식 계류시설의 지진시 동적거동 특성 연구)

  • Oh, Jeong-Keun;Jeong, Yeong-Seok;Kwon, Min-Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.3
    • /
    • pp.1-12
    • /
    • 2021
  • The purpose of this paper is to study of the applicability of the current response spectrum analysis method by grasping the dynamic behavior characteristics of soil-pile and pier-crane in pile mooring facilities. To this end, time history analysis was performed using Abaqus as a design variable for various soil types, pile-ground modeling, and structure specific cycles. The results were compared with the analysis results of the response spectrum. Subsequently, a problem has been found in the current response spectrum analysis and the improvements are needed when considering the dynamic behavior of the ground-pile and pier-crane of the pile mooring facility.

Structural Response Analysis for Multi-Linked Floating Offshore Structure Based on Fluid-Structure Coupled Analysis

  • Kichan Sim;Kangsu Lee;Byoung Wan Kim
    • Journal of Ocean Engineering and Technology
    • /
    • v.37 no.6
    • /
    • pp.273-281
    • /
    • 2023
  • Recently, offshore structures for eco-friendly energy, such as wind and solar power, have been developed to address the problem of insufficient land space; in the case of energy generation, they are designed on a considerable scale. Therefore, the scalability of offshore structures is crucial. The Korea Research Institute of Ships & Ocean Engineering (KRISO) developed multi-linked floating offshore structures composed of floating bodies and connection beams for floating photovoltaic systems. Large-scale floating photovoltaic systems are mainly designed in a manner that expands through the connection between modules and demonstrates a difference in structural response with connection conditions. A fluid-structure coupled analysis was performed for the multi-linked floating offshore structures. First, the wave load acting on the multi-linked offshore floating structures was calculated through wave load analysis for various wave load conditions. The response amplitude operators (RAOs) for the motions and structural response of the unit structure were calculated by performing finite element analysis. The effects of connection conditions were analyzed through comparative studies of RAOs and the response's maximum magnitude and occurrence location. Hence, comparing the cases of a hinge connection affecting heave and pitch motions and a fixed connection, the maximum bending stress of the structure decreased by approximately 2.5 times, while the mooring tension increased by approximately 20%, confirmed to be the largest change in bending stress and mooring tension compared to fixed connection. Therefore, the change in structural response according to connection condition makes it possible to design a higher structural safety of the structural member through the hinge connection in the construction of a large-scale multi-linked floating offshore structure for large-scale photovoltaic systems in which some unit structures are connected. However, considering the tension of the mooring line increases, a safety evaluation of the mooring line must be performed.

Measurement of vertical migration speed of Sound Scattering Layer using an bottom mooring type Acoustic Doppler Current Profiler (해저설치형 음향도플러유향유속계를 이용한 음향산란층의 연직이동속도 측정)

  • Jo, Hyeon-Jeong;Lee, Kyoung-Hoon
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.46 no.4
    • /
    • pp.449-457
    • /
    • 2010
  • This study shows that the vertical migration speed of sound scattering layers (SSLs), which is distributed in near Funka Bay, were measured by 3D velocity components acquired from a bottom moorng ADCP. While the bottom mooring type has a problem to measure the velocity vectors of sound scattering layer distributed near to surface, both the continuous vertical migration patterns and variability of backscatterers were routinely investigated as well. In addition, the velocity vectors were compared with the vertical migration velocity estimated from echograms of Mean Volume Backscattering Strength, and estimated to produce observational bias due to SSLs which is composed of backscatterers such as euphausiids, nekton, and fishes have swimming ability.

The submerged flexible membrane breakwaters in oblique seas

  • S.T.Kee
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2001.05b
    • /
    • pp.1133-1138
    • /
    • 2001
  • The focus of this paper is on the numerical investigation of obliquely incident wane interactions with a system composed of full submerged and floating dual buoy/vertical-flexible-membrane breakwaters placed in parallel with spacing. The fully submerged systems allow surface and bottom clearances to enable wave transmission over and under the system. The problem is formulated based on the two-dimensional multi-domain hydro-elastic linear wave-body interaction theory. The hydrodynamic interaction of oblique incident waves with the combination of the rigid and flexible bodies was solved by the distribution of the simple sources (modified Bessel function of fille second kind) tat satisfy the Helmholz governing equation. Using this computer program, the performance of various dual systems varying buoy radiuses and drafts, membrane lengths, clearances. spacing, mooring-lines stiffness, mooring types, water depth, and wave characteristics is thoroughly examined. It is found that the fully submerged and floating dual buoy/membrane breakwaters call, if it is properly tuned to the coming waves, have good performances ill reflecting the obliquely incident waves over a tilde range of wave frequency and headings.

  • PDF

A Study on the Development of Dynamic Positioning System for Barge Type Surface Vessels (Barge 형 수상선의 DP(Dynamic Positioning) System 개발에 관한 연구)

  • Bui, Van-Phuoc;Kim, Young-Bok
    • Journal of Power System Engineering
    • /
    • v.16 no.2
    • /
    • pp.66-74
    • /
    • 2012
  • In this paper, the authors propose a new approach to control a barge type surface vessel. It is based on the Dynamic Positioning System(DPS) design. The main role of barge ship is to carry and supply the materials to the floating units and other places. To carry out this job, it should be positioned in the specified area. However sometimes the thrust systems are installed on it, and in general the rope control by mooring winch system is used. It may be difficult to compare the control performances of two types. If we consider this problem in point of usefulness, we can easily find out that the winch control system is more useful and applicable to the real field than the thrust control system except a special use. Therefore, in this paper we consider a DPS design problem which can be extended to the many application fields. The goal of this paper is twofold. First, the sliding mode controller (SMC) for positioning the our vessel is proposed. Especially, in this paper, a robust stability condition is given based on descriptor system representation. In the result, the sliding mode control law guarantees to keep the vessel in the defined area in the presence of environmental disturbances. And second, the thrust allocation problem is solved by using redistributed pseudo-inverse (RPI) algorithm to determine the thrust force and direction of each individual actuator. The proposed approach has been simulated with a supply vessel model and found work well.

Performance of the Submerged Dual Buoy/Membrane Breakwaters in Oblique Seas

  • Kee, S.T.
    • Journal of Ocean Engineering and Technology
    • /
    • v.15 no.2
    • /
    • pp.11-21
    • /
    • 2001
  • The focus of this paper is on the numerical investigation of obliquely incident wav interactions with a system composed of fully submerged and floating dual buoy/vertical-flexible-membrane breakwaters placed in parallel with spacing between two systems. The fully submerged two systems allow surface and bottom gaps to enable wave transmission over and under the system. The problem is formulated based on the two-dimensional multi-domain hydro-elastic linear wave-body interaction theory. The hydrodynamic interaction of oblique incident waves with the combination of the rigid and flexible bodies was solved by the distribution of the simple sources (modified Bessel function of the second kind) that satisfy the Helmholz governing equation in fluid domains. A boundary element program for three fluid domains based on a discrete membrane dynamic model and simple source distribution method is developed. Using this developed computer program, the performance of various dual systems varying buoy radiuses and drafts, membrane lengths, gaps, spacing, mooring-lines stiffness, mooring types, water depth, and wave characteristics is thoroughly examined. It is found that the fully submerged and floating dual buoy/membrane breakwaters can, if it is properly tuned to the coming waves, have good performances in reflecting the obliquely incident waves over a wide range of wave frequency and headings.

  • PDF

The study On An Yacht Moorings Establishment Location Analysis Using Optimum Spiral Method (최적화 기법을 이용한 요트 계류장 입지분석에 관한 연구)

  • Park, Sung-Hyeon;Joo, Ki-See
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.17 no.4
    • /
    • pp.323-329
    • /
    • 2011
  • This study is to determine an optimal yacht mooring location candidate among many alternative candidates in order to obtain the maximized efficiency under the natural conditions using integer programming. To deal with marina's construction location, the optimal construction location is selected using 21 important factors analysis for 4 candidates in the Mokpo city. The development period and the initial investment cost weight are one and half times more than the others among 21 factors. The optimal spiral analysis of weighted linear model shows that the Peace Square sea area is selected as the most optimal place among 4 candidates. This proposed model has not been applied in the optimal marina's facility candidate selection problem yet. This paper will contribute to determine the most reasonable alternative. Also, this proposal model can be applied to other marina's facility candidate selection problem in other regions.

Firms' Switching Intention to Cloud Based Digital Trade: Perspective of the Push-Pull-Mooring Model

  • In-Seong Lee;Sok-Tae Kim
    • Journal of Korea Trade
    • /
    • v.26 no.6
    • /
    • pp.20-40
    • /
    • 2022
  • Purpose - In recent times, the international trade environment has been changing rapidly, centering on the online market. In the post-COVID-19 era, small and medium-sized trading companies are facing the problem of not being properly provided with overseas market research, market trend analysis, and trade-related information. Cloud-based digital trade is being sought as an alternative to solve these problems; however, there is a lack of research on the intention to switch to digital trade among small and medium-sized trading companies. Therefore, this study empirically analyzes the intention to switch to digital trade based on the migration theory, and through this, attempts to identify each factor that affects the intention to switch to digital trade. Design/methodology - In this study, in order to identify factors influencing intention to switch to digital trade and innovation resistance of small and medium-sized trading companies, through previous research on migration theory and the PPM (Push, Pull, Mooring) model, each variable was selected for the purpose of the study. Based on this, a research model was established for the factors affecting switching to digital trade of small and medium-sized trading companies and empirically analyzed. In addition, considering the differences in the innovation propensity and maturity of information infrastructure of trading companies as the recipients of innovation, this study analyzes the moderating effect of the mooring effect and seeks ways to establish specific strategies according to the degree. Findings - As a result of empirical analysis, the pull effect was found to have the greatest influence on intention to switch to digital trade. However, the pull factor was found to have an effect on user resistance, and it was confirmed that it was a factor simultaneously inducing positive and negative consumption behaviors among users. In addition, it was found that the higher the company's innovation propensity, the higher the pull effect's influence on the intention to switch, and analysis showed that the push effect had no influence. In addition, companies with high information infrastructure maturity were expected to have a relatively high level of intention to switch compared to companies with low information infrastructure maturity, and the difference between the two groups was found not to be statistically significant. Originality/value - This study is a timely study in that it demonstrated the effect on the switching to cloud-based digital trade for small and medium-sized trading companies and that the cloud system related to digital trade is in full swing. There are academic implications in that it revealed that the pull effect is an important factor in the intention to switch to cloud service. Practical implications were presented in that small and medium-sized trading companies suggested ways to increase the value of the cloud system for switching to digital trade and a way to increase the switching ratio by minimizing the mooring effect. In addition, the study argues that active institutional support from the government is needed to activate cloud service.