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1. Abstract

The focus of this paper is on the numerical investigation of ¢bliquely incident wave interactions with
a system composed of fully submerged and floating dual buoy/vertical-flexible-membrane breakwaters placed in
parallel with spacing. The fully submerged systems allow surface and bottom clearances to enable wave
transmission over and under the system. The problem is formulated based on the two-dimensional multi-domain
hydro-elastic linear wave-body interaction theory. The hydrodynamic interaction of oblique incident waves witly
the combination of the rigid and flexible bodies was solved by the distribution of the simple sources (modified
Bessel function of the second kind) that satisfy the Helmholz governing equation. Using this computer prograr,
the performance of various dual sysiems varying buoy radiuses and drafts, membrane lengths, clearances,
spacing, mooring-lines stiffness, mooring types, water depth, and wave characteristics is thoroughly examined. Tt
is found that the fully submerged and floating dual buoy/membrane breakwaters can, if it is properly tuned to the
coming waves, have good performances in reflecting the obliquely incident waves over a wide range of wave

frequency and headings.
2. Introduction

The advantages of floating flexible membrane wave barriers over conventional fixed breakwaters
include their reduced environmental impacts, ability of relocation, simple sacrficial design, free from bottom
foundation consideration, and comparably low cots in deep water constructions. The vertical floating flexible
membrane breakwater was investigated by Thomson et al.(1992), Aocki et al.(1994), Kim and Kee(1996,
1997), Williams(1996). Kim and Kee(1996, 1997) showed that the a good performance ¢an be obtained
in spite of appreciable sinusoidal motions of membrane because the vertical sinusoidal motions tends to
generate only exponentially decaying local(evanescent) wave in the lee side.

The vertical flexible membrane system was composed of surface pierced buoys and vertical
flexible membranes hinged at seafloor. So these breakwaters expect large wave loadings and possible
blockage of aesthetic view, water circulation, sediment transport, fish passage, and surface vessel. In view
of this, ideal porous horizontal membrane wave barriers have been investigated by Cho and Kim(2000).

In practice, a fairly good performance as breakwaters in wide frequency region including long waves, a
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major fraction of the water column needs to be occupied by the system.

In the present paper, we investigated the performance of the fully submerged vertical flexible
membrane breakwaters with clearances between bottom of system and seafloor in oblique seas. It is
assumed that buoy and membrane motions are uniform in the longitudinal direction and small to allow linear
theory. It is also assumed, for simplicity, which the buoy is rigid and the heave motion of the buoy is negligible
due to large initial tension. The coupling of buoy and membrane motions was taken into consideration of buoy
and membrane motions through an appropriate boundary condition at the joint. The velocity potentials of wave
motion are fully coupled with membrane deformation. The membrane motion and the rigid body motion of a
buoy become dynamically coupled with each other, thus the membrane motion and velocity potentials
need to be solved simultaneously. Numerical results are presented to check the accuracy and validity of the

present multi-domains boundary element program by the energy-conservation formula and conversance test.
3, Numerical Method

The geometry of the submerged flexible membrane breakwaters is depicted in Fig. 1. The system is
idealized as two-dimensional allowing that wave and system motions are uniform in z direction, and Cartesian
coordinates are employed. The system is subjected to an incident train of regular, monochromatic, small
amplitude A, harmonic motion of frequency @, obliquely propagating with an angle 8(0<8<x/2)
to x-axis in water of arbitrary depth £ as shown in Fig. 1. The ideal flow field can be described in
terms of the total velocity potential for an oblique incident wave:

_ —igd coshk,(y+h) k.cos0x (1)
w coshk, A

D(x, y,2,1) = Re[g, (x, p)e "], g,

where k. =k, sinf is the wave number k&, component in the z direction, and is related to the angular
frequency through the dispersion relation @’ =k, gtanhk,h with g being the gravitational acceleration. The
complex velocity potentials, ¢, ¢, and ¢, in three fluid domains 1, 2 and 3 (see FIG. 1), then satisfy the
Helmholtz equation V¢, —kig, =0,(1=12,3) as governing equation and the following linearized free-
surface ( 'z ), bottom (T, ), and radiation conditions T', :

_w2¢1+gi@¢)’—=0 (on I'p), —%;—:O (on T), hljiﬁ)‘x;(%tikﬁ(i):O (on T,) (2)

where n= (”x:”y) is the unit outward normal vector, Under large initial tension, we assume, for simplicity

that the heave motion of the buoy is negligible. Then the boundary condition on the floating buoy is

Yy op
+iw{mn, +mugt+—=—=0 (3
; Imnyg +mng} - (3)
where ng =xn, —yn,, and the symbols 7;,, 7, represent complex sway and roll responses of a buoy

respectively.
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Fig 1. Definition Sketch for Fully Submerged Flexible Membrane Breakwaters

In addition, the disturbance potentials must satisfy the following linearized kinematic/dynamic boundary

conditions on the membrane surface I, and the continuity of hydrodynamic pressure and normal fluid

velocity on the vertical fictitious boundary I'y:

d*é

gy _ 8y, . ] ap Oy,
BeeBemmior, S22 =BG 0) ot Ty =, ST T )

071 &
in which A=wvm/T,with T and m Dbeing the membrane tension and mass per unit length for front

and rear membrane system, respectively. To solve the present boundary value problem, a three-domain
boundary integral equation method using simple sources along the entire boundary is developed. The
fundamental solution (Green function) of the Helmholtz equation and its the normal derivative of G are given by

1 oG 1 ar k,r
G K, (), Lok K (k)2 K, (k,r)=—y—In(2y 4 0 (5
2 (ker) én 2r ¢ 1 7)&71 (k7)== = In( 2 ) Ag 1200

where K, is the modified zeroth-order Bessel function of the second kind and # is the distance from the

source point (x',)’) to the field point (x,y), ¥ =0.5772 is known as Euler’s constant using recurrence
formula of the Bessel function.

By applying Green's second identity in each of the fluid regions to the unknown potentials
@, 1=123 and imposing the relevant boundary conditions, the integral equations in each fluid domain can be

written as
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where the infinite-depth wavenumber v = o> / g, s;=1, 5;;,=-1,and C = solid angle constant. In (39), the
potentials ¢, do not include incident waves. To solve (6), the entire boundary is discretized into a large finite
number of segments. On each segment the potential is assumed to be constant, and the singularities G and
8G/dn are integrated analytically (Au & Brebbia, 1982). The integral equations (6) can then be transformed to
the corresponding algebraic matrix equation. For instance, if each of half fluid domain is discretized by
N=Np+N_+N,+N,+N;, +Nf segments, there are 3N unknowns for ¢, , ¢, and ¢, , 2N,
unknowns for displacements & of dual membranes, and four more unknowns two 7; and #; for two buoys.
Therefore, 3N +2N,, +4 linear simultaneous equation has to be solved. The discrete form of the membrane
equation of motion for j-th element is given by
pia(y; = )y ~T;(0680) ; + Ty (BE/OG) 1 = —ml@®E; . (DE]00); = (&5 —£;)/8¢; (T)

where the symbol /; is the length of the j-th segment, and A{, =(/; +/;,,)/2. As mentioned before, the

heave response is neglected assuming large initial tension. The coupled equation of motion for sway and roll of a

buoy is then given by

; m,  —my
M(_a)z)X=FP_(KHS+Km)X'"FT3 A :[771773]T: M:[ cjl (8)
—m,y, 7
where m, is the mass of the buoy, y, the vertical coordinate of the center of mass, / the roll moment of
inertia, £, the potential forces and moments on the buoy, Ky the restoring forces and moments due to

the hydrostatic pressure, K, sway and roll mooring stiffness, and F; the force and moment on the buoy

by tension at the connection point between membrane and buoy. Since £ and 7 are unknown and coupled,
(6) cannot be solved for ¢, [=123 independently. Thus, the total disturbance (diffractiontradiation)

potential (6) and buoy (8) and membrane motions (7) have to be solved simultaneously.
NUMERICAL RESULTS AND DISCUSSIONS

The computational domain is defined as in Figure 1. The vertical truncation boundary is located 34

waterdepths away from the membrane to ensure that local wave effects are negligible. First, the numerical results
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were checked satisfactory against the energy-conservation formula i.e. R} +T? =1. In Figures 2, the reflection

coefficients of a fully submerged system with varying mooring type, stiffness, and clearances are plotted for the

cases f,/a; =002, t,/a, =002, a;/h=02, a,/h=02, and parameters as shown in Table 1. The

efficiency drastically enhances as the mooring type and stiffness varies. In case 1, both buoy are restrained
firmly by upper and lower moorings, and resuits in poor performance. It shows that incident wave is transmitted
over the system except some narrow frequency band and high wave beadings. As can intuitively be expected, the
performance of the large-clearance case in short waves is poor. However, fairly good efficiency is shown in case
2 that both systems are restrained by only lower mooring, which allows motion of buoys. The response of the
buoy restrained at its joint to the incident waves generate radiation wave, which interact with incident and

scattering waves. It is interesting that the some low efficiency at kh=2.5,5 due to systemn resonance
disappears after slightly tuned by T, /K ;; = 0.2, which performance shows in case 3. As shown in case 4, the

front and rear system has smaller free surface and bottomn clearances compared to that of case 2, respectively,

overall efficiency of the fully submerged system with only lower mooring is improved for wider incident wave

Case 1 Case 2

T

frequency and angles.
7

W”//I/ %l/l Do

Case 3 Case 4

Fig 2. The reflection coefficients for ¢, /a, =0.02, 1,/a, =0.02, a;/h=02, a,/h=0.2, and the specified

parameters in Table 1.
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Case # Tr /K T [Kss T,/Kn T./K,, Cy/h Cp/h Cy/h Cylh
Case 1 0.1 0.1 0.1 0.1 0.125 0.125 0.125 0.125
Case 2 0 0.1 0 0.1 0.125 0.125 0.125 0.125
Case 3 0.2 0.1 0 0.1 0.125 0.125 0.125 0.125
Case 4 0 0.1 0 0.1 0.125 0.05 0.05 0.125

Table 1: Various values for mooring stiffness and clearances for the submerged flexible membrane breakwaters.

SUMMARY AND CONCLUSIONS

The performance of fully submerged dual systems in oblique waves was tested with varying buoy
radius and draft, water depth, membrane length, clearances, mooring-line characteristics, and wave conditions.
The efficiency as breakwater depends critically on the three parameters: buoy radius to water-depth ratio,
mooring type with different stiffhess, free surface and bottom clearances. Therefore, a properly tuned system
with sufficiently large membrane tension, restrained motion of buoys, and clearances allowing passage of flow
needs to be provided to guarantee high performance. The performance in long oblique waves can be greatly
improved controlling surface and bottom clearances. Using the developed computer program, an optimum
design for a given sea condition can be determined through a comprehensive parametric study including various
buoy shapes. To see the effects of large motions and high waves, a nonlinear time-domain program needs to be

developed. The numerical results also need to be verified by large-scale experiments and/or field tests.
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