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Performance of the Submerged Dual Buoy/Membrane
Breakwaters in Oblique Seas
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ABSTRACT: The focus of this paper is on the numerical investigation of obliquely incident wave interactions with a system composed
of fully submerged and floating dual buoyvertical-flexible-membrane breakwaters placed in parallel with spacing between two systems.
The fully submerged two systems allow surface and bottom gaps to enable wave transmission over and under the system. The problem
is formulated based on the two-dimensional multi-domain hydro-elastic linear wave-body interaction theory. The hydrodynamic interaction
of obligque incident waves with the combination of the rigid and flexible bodies was solved by the distribution of the simple sources
(modified Bessel function of the second kind) that satisfy the Helmholz governing equation in fluid domains. A boundary element
program for three fluid domains based on a discrete membrane dynamic model and simple source distribution method is developed.
Using this developed computer program, the performance of various dual systems varying buoy radiuses and drafis, membrane lengths,
gaps, spacing, mooring-lines stiffness, mooring types, water depth, and wave characteristics is thoroughly examined. It is found that the
fully submerged and floating dual buoy/membrane breakwaters can, if it is properly tuned to the coming waves, have good performances
in reflecting the obliquely incident waves over a wide range of wave frequency and headings.

INTRODUCTION frequency region including long waves, a major fraction of the
water column needs to be occupied by the system. In view of this,

the vertical flexible membrane system was composed of surface

f floati i barri
The advantages of floating flexible membrane wave oIS over pierced buoys and vertical flexible membranes hinged at seafloor.

i ed b includ ir reduced i
conventional fix reakowaters include their reduced environmental However, these breakwaters expect large wave loadings and possible

i ts, ability of relocation, simpl ificial design, free fro L . . .
tmpacts, ability ol relocation, simple sacrificia 1gm, free m blockage of aesthetic view, water circulation, sediment transport,

bottom foundation consideration, and comparably low cost in deep .

) fish passage, and surface vessel passing.
water constructions. Membrane systems have been proposed for use

) bmerged breakwat

a po‘rtabe temporary brfaakwa‘texs,. S n.lerg . reaKwalers, In the present paper, fully submerged vertical flexible membrane
contaminant booms for floating oil slicks, silt curtains, and for
storage and transportation of fluid in the ocean (Amal C er al,
2001). A number of vertical floating flexible membrane breakwaters
have been investigated by Thompson et al. (1992), Aoki et al.
(1994), Kim and Kee (1996, 1997), Williams (1996). Kim and Kee
(1996, 1997) developed an analytical model for wave transmission
and reflection by a vertical pre-tensioned membrane using the

breakwaters with gaps between bottom of system and seafloor are
adopted for their performance investigation in oblique seas. One
reason of the adoption of the fully submerged breakwaters with
bottom gaps is that such breakwaters are favored from the point of
view of a marine scenario. Another significant reason is that free
exchange of water mass and sediment through the gaps supplied by
cigenfunction expansion method and also presented a numerical [}'16 sys.tem. So the water in the sheltered region can be kept
solution of the problem employing simple source distribution circulating and therefore prevent stagnation and pollution. And the
method. Their results showed that the a good performance can be

obtained in spite of appreciable sinusoidal motions of membrane

seabed profiles can be kept in general partitioning the natural sea.

For the analysis of these submerged floating breakwater system,

because the vertical sinusoidal motions tends to generate only
we assumed that buoy and membrane motions are uniform in the

exponentially decaying local (evanescent) wave in the lee side.
These methods were latter applied to dual vertical floating flexible
membrane system (Cho er al, 1997; 1998) in oblique seas, and a
horizontal membrane and verified by laboratory experiments (Cho
and Kim, 1998; 2000).

In practice, a fairly good performance as breakwaters in wide

longitudinal direction and small to allow linear theory. It is also
assumed, for simplicity, that buoy is rigid and the heave motion of
buoy is negligible due to large initial tension. The coupling of buoy
and membrane motions was taken into consideration through an
appropriate boundary condition at the joint. The velocity potentials
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of wave motion are fully coupled with membrane deformation. The
membrane motion and the rigid body motion of a buoy become
dynamically coupled with each other, thus the membrane motion
and velocity potentials need to be solved simultaneously. Numerical
results are presented to check the accuracy and validity of the
present multi-domains  boundary program by the
energy-conservation formula and convergence test. The present study
deal with the fully submerged floating buoy/membrane subject to
oblique incident wave and focuses on the resonance and response

element

characteristics, which are important in the design and operation of
the system, but have not been adequately studied before.

THEORY AND NUMERICAL METHOD

With a reference to Fig. 1, the oblique incident wave and
buoy/membrane interaction problem in multi-fluid domain and with
the geometry are defined with a Cartesian coordinate system x-y, in
which x is measured horizontally, and y is measured vertically
upward from the still water level. The system is idealized as
two-dimensional allowing that wave and system motions are
uniform in z direction. The system is subjected to an incident train
of regular, monochromatic, small amplitude A, harmonic motion of
frequency @, obliquely propagating with an angle @
(0<@<m/2) to x-axis in water of arbitrary depth h as depicted
in Fig. 1. The ideal flow field can be described in terms of the
time-harmonic total velocity potential for an oblique incident wave:

O(x,y, z, ) = Rel{ $,(x, 9) + $(x, )" ] )

igA coshk,(y+ k)

ikgcos Bx
1) cosh &,z € 2

$,=

where =V —1, ¢ denotes time, k,= k,sind is the wave number
k, component in the z direction, and is related to the angular
w*= k,gtanh k,h with

¢, is the known incident

frequency through the dispersion relation
g being the gravitational acceleration.

potential and ¢ is the time-independent unknown scattered
potential, which includes both diffraction and radiation effects.

The unknown scattered complex velocity potentials, ¢;, ¢, and
@3, in three fluid domains I, II and Il (see Fig. 1.) satisfy the
Helmholtz equation v %¢,— k*¢,=0, (/=1,2,3) as goveming
equation and the following linearized free-surface (7I7z), bottom
(I'y), and radiation conditions( I';):

0 2

ey (on 1) ©)

oy (on 1) @
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where I is the vertical truncation boundaries at far fields and
n={(n,,n,) is the unit outward normal vector. In the numerical
implementation, the radiation boundary condition is applied on I':
located at a finite distance from the edge of structures. Under large
initial tension, we assume, for simplicity, that the heave motions of
the buoys are negligible. .Then the boundary condition on the
floating buoys in each fluid domain is

9 . ag,
%+zw{mm+ 73%9}+%:0, [=1,2,3 ©6)

where #n,= xn,— yn,, and the symbols 7,, 7; represent complex
sway and roll responses of buoys respectively. In addition, the
scattered unknown potentials must satisfy the following linearized
kinematic/dynamic boundary conditions on the membrane surface:

96, 0i

ax ox O 1ed )
L5 6= (g~ pi) (on T) ®

where o is the fluid density, A=V m/T with T and m being
the membrane tension and mass per unit length for front membrane
system, harmonic
By, H = Re[ &)e™ ™. In addition, the surface and bottom
the following wvertical fictitious boundary
condition( I";) based on the continuity of hydrodynamic pressure and
normal fluid velocity.

respectively. The membrane motions are

gaps must satisfy

d 0
1= 11, aﬁl:* q;;“

at Iy ®

Since buoys are connected to the membranes, the coupled dynamic
equations need to be solved. Unlike rigid body hydrodynamics, the
body boundary condition on membrane is not known in advance.
Therefore, the membrane and buoy motions and velocity potentials
need to be solved simultaneously. To solve the present boundary
value problem, a three-domain boundary integral equation method
using simple sources along the entire boundary is developed. Using
Green’s second identity, the unknown scattered potential can be
expressed as

ey = [{ox, )98~ Gryw )y Fhlar a0

where C=solid-angle constant and the integral covers the entire
boundary of each fluid region, (x,y) and (x’,y’) are field point
and source point, respectively. The fundamental solution (Green
function) of the Helmholtz equation and its the normal derivative of
G are given by

G=— 5 K,(k.7) (an

96 _ 1 or
on = ox kElkn) 5 12
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When the source point shrinks to the field point on boundary ie., f AK (A7) or dr=0 (13)
when »—( a singularity exists due to the presence of K,(A#), and r on
the analytic solution for this integration is impossible. One can use fr/lK LAnydlr= f i o ln(§1>dl’
the following existing approximations in the Cauchy principal value A 1
sense. = [~ r+in(4)in()ar (14)
Applying Green’s second identity in each of the domains to the
M unknown potentials ¢, and imposing the relevant boundary

(=1

Cy r, . T, - G, conditions, the integral equations in each fluid domain can be
. a, a, T .
mooringtype 1 % ) t,B written as
oring type 2 "\ T,

m B
Te I Il m hiile 1 or 2@,
[ r, Corm - [{RERD) G o+ K (kr) 50 far (1)
\mogring type 3 d
N T, . o N In Eq. (15), all the boundary conditions of ¢, except for the
T dynamic boundary conditions of buoy and membrane can be

straightforwardly implemented.
Imposing the boundary conditions, Eqs. (3)~(7) into Eq. (15), the
integral equations in each fluid domain can be written as

Fig. 1 Coordinate system and integration domains for dual fully
submerged buoy/membrane breakwater

Cor+ [ LK) -3L — vK (k. V¢l

Fig. 2a Convergence test of BEM(N=100) for T /K ;=0.1,
tila;=0.02, a fh=0.125, a,/h=0.2, cw/h=10.125,
dJh=1

Fig. 2c¢ Convergence test of BEM(N=280) for 7 ,/K ;=0.1,
tifa;=0.02, a;/h=0.125, a,/h=0.2, c4/h=0.125, d /h=1

///////////,,I///,
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Fig. 2d The reflection coefficient as function Ak and @ for
Ti/K;=0.1, tia;=0.02 a/h=0.125  a,/h=0.2,

Fig. 2b Convergence test of BEM(N=200) for 7T /K ;=0.1,
tifa;=0.02, a/h=0.125, a,/h=0.2, cu/h=0.125

d.Jh=1 calh=0.125, d Jh=1
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+ 1,1 kK (k) I~ ik K (k)1p dl
+ [, $Ki(r) 5L dr

+ f L BikK(k, r)% sliwdK(k,n]dl
+ [ LokE ) S

+ 0K (kA it mang) + K (k)T

(1=1,2,3)

” ldr=0

(16)

where v= w?/g is the infinite-depth wave number. C is solid
angle constant, and (s, =1, sy=-—1) for fluid domains I, IT and
(s3=1, s3=—1) for fluid domains II, I1I, since the front and rear
membrane and buoy have two fluid domains (I, II) and (I, III)
respectively as depicted in Fig.1. The integration of open boundary
has to be vanished in Domain II.

To solve Eq. (16), the entire boundary is discretized into a large
finite number of segments. On each segment the potential is
assumed to be constant, and the singularities G and 0G/dn are
integrated analytically in Egs. (13)~(14). The integral Eq. (16) can
then be transformed to the corresponding algebraic matrix equation.
For instance, if each of half fluid domain is discretized by
N=Ng+ Nc+ Ny+ N,,+ Ng+ N;
unknowns for ¢, ¢, and ¢;, 2N, unknowns for displacements

segments, there are 3N

& of dual membranes, and four more unknowns two 7, and 7,
3N+2N,,+4 linear simultaneous
equation has to be solved. Eq. (16) cannot be, however, solved for
¢, independently since & and 7,, 7; are unknown. The Eg. (16)

for two buoys. Therefore,

should be coupled with the equations of motion of the membranes
and buoys.

The discrete form of the equation of membrane motion for ;—
element is given by

o1 iy — Biv1)) i — T(/)(%) t T(j“)(%_if)/ﬂ

7

=—mlo’s, (17

where (%—?),-Z (Erp— Em-) 2 ¢

The symbol /; is the length of the
at;=(lL+{;1)/2. The geometric boundary conditions at the

j—th segment, and

seabed and the top connection points of membrane (0, —d,.) are

E=0at y=—h, E=9+Ryp; at y=—d, (18)

where R is the distance from the connection point (0, —d,) to

rotation center of buoy. The Eq. (17) can in principle be solved
for variable tensions. In the present study, however, we assume that
the initial tension T is much greater than membrane weight or
dynamic tension thus can be regarded as constant.

Next, we consider the rigid-body motion of buoys. As mentioned
before, it is assumed that the heave response is negligible due to
large initial tension. The coupled equations of motion for sway and
roll are given by

M(—o)X=F,~ (Kys+ K, )X~ Fy+ Fp (19
where X=1[7, 7,]7, and the mass matrix M are given by
— m, MY
M — MY, I (20)

where m, is the mass of the buoy, and y_ is the vertical
coordinate of the center of mass, and [ is the roll moment of
inertia. The potential hydrodynamic forces and moments F, can be

calculated from the integration of hydrodynamic pressures over the
buoy surface:

(¢o+ ¢l)nxAl/+ (¢o+ ¢2)nxA lj

B (¢o+ ¢1)n5A l]+(¢o+ ¢2)n0A lJ (21)

F,=10w

where A /; is the length of each segment of the buoy surface. The

restoring forces and moments due to the hydrostatic pressure are

given by
0 0

Kys= ” 22
{O og f X ax+ Y ogyy— mgy.

where V is the displaced volume, and y, is the vertical

coordinate of the center of buoyancy for each buoy. For simplicity,
we assume that the mooring lines are massless and symmetric with
respect to the y axis. Taking the angles of mooring line with the
horizontal (toe angles) as g, the attachment points on the cylinders
as (x,,v,)and the two dimensional spring constants of the
mooring lines as K, the resultant sway and roll mooring stiffness
are given by (Patel, 1990)

cos’f  — Scos B]
(23)

K= 2K[ — ScosB s?

where S=/{x,/sin8—|y,lcosp

At the connection points between membranes and buoys, the
tensions cause the following forces and moments on the buoys:

24

Fr= T(N,,,+1)‘[ — sina }

Rsin 73 cos @ — Rcos 73sin @
where ¢ is the angle of membrane at the connections with respect

to the y axis for each buoy, and the symbol R is the radial



Performance of the Submerged Dual Buoy/Membrane Breakwaters in Oblique Seas 15

distances from the center of rotation of buoy to the connection

points on each buoy. Assuming the angle ¢ is small, cosae=1,
sina= _(_ag) , and Eq. (24) can be rewritten as
aé‘ N,+1
2 2R
IN lN m
Fr=Tw,+v 5 o2 { ] }
2R R 2R 7
] lN,,, le
2
ln,
~Twon |55 (29)

We can see that the first terms of Eq. (25) give positive restoring
forces and moments to the each buoy, while the second terms act
as sources of excitation proportional to the motion amplitude of the
neighboring membrane element. Therefore, the membrane tensions
can be either restoring forces or excitations. For the present
numerical results, viscous drag forces F,, are not included unless

mentioned otherwise, and these are detailed in Kee & Kim (1997).

NUMERICAL RESULTS AND DISCUSSIONS

The three-domain boundary element program developed as
described in the preceding section was used to demonstrate the
performance of fully submerged dual buoy/membrane wave barriers
in oblique incident waves. As coordinate system and computational
domain are defined in Fig. 1, the two submerged system in parallel
with spacing «,. Based on previous study (Kee & Kim, 1997) the
efficiency for larger mooring stiffness is higher, and the best
performance can be achieved for the dual mooring system (mooring
type 3). The toe angles of mooring type | and 2 are 33° and 29.6°,
respectively. The upper mooring line (type 1) is attached to the side
of maximum width, while the lower mooring line (type 2) is
attached at the bottom of the buoy. The submerged buoy/membrane
gaps
which present front (f) free surface (f) gap, front (f) bottom
(b) gap, rear (r) free surface (f) gap, rear (r) bottom (b) gap
respectively.

system  allows cpli=f,7) (k=f,b) —Cy, Cpy Crpy Cop

The convergence test of the developed BEM program for the

system design parameter 7T/K;=0.1, #/a;=0.02, a/h=
0.125, a/h=0.2, cx/h=0.125, d./h=1. T{i=/f7) is
tension of  front Hh and rear (2] membrane.

Ki(i—f,»,(j=1,2) is mooring stiffness, j= 1, 2denotes upper
(1) and down (2) mooring lines. Figs. 2a~2c. show the results with
increasing the number of segments N=100, 200, 280 in fluid
domain I, and were checked against the error that was calculated

from the energy conservation relation R%+ T%=1. It is seen that

the errors uniformly decrease in a domain of ki and 6 as the
number of segments is increased. From those tests, the number of
total elements in the first fluid domain N=280 gave sufficient
accuracy, and thus was used for the ensuing further computation.
Fig. 2d. shows the results as function of non-dimensional frequency
kh and incident wave angles 4. It is seen that almost complete
refection in vicinity of £2=12.3, and for a wide of wave headings,
however, allows wave transmission for other frequencies and wave
headings.

When the system has a various spacing like 4./2=1,2,3 for
ciu/h=10.125 and a smaller radius of rear buoy without mooring
lines, the varying performances are shown in Figs. 3 a~3c. It is
seen that the efficiency for increased spacing is not improved
except the narrow band of the low frequency and high wave
headings. We can expect a relatively good performance at high
frequency band if the motions of buoy are allowed in fluid field.
Since the scattered wave generated by motion of buoys has possible
mutual cancellation effects against incident waves. Therefore the
submerged system needs to be positioned close to the free surface
to get higher disturbance in high wave energy region. So the free
surface gaps are narrowly set as c¢;= ¢,,=10.05, and its efficiency
is shown in Fig. 4. Its performance in high frequency region is
some what improved compared to that of deeper free surface gaps
(Figs. 3a.).

When the large sizes of buoys «a,/f=a,/h=0.2 are employed
for systems with strong mooring stiffness 7/K,=0.1, mooring
type 3, cu/h=0.125, and d/h=1. The efficiency for this
breakwater is shown in Fig 5. Except high incident wave angle
8=85" the performance is generally poor enough to transmit most
waves. Although strong mooring system can insure the vertical
sinusoidal manner of membrane motion that transfer the incident
wave to the exponentially decaying local standing wave, the
hydrodynamic effects of membrane motions are not significantly
influenced to near fluid field since the membrane occupied only
partial part of water column. In addition the wave are hardly
generated thanks to buoys restrained strongly by mooring lines.
Therefore almost all waves are passing over and beneath systems
without mutual cancellations with reflected and radiated waves.

After removing upper mooring line of rear buoy, only mooring
lines at joint (mooring type 2) exist, and it allows motions similar
to the pivoted vibration at joint. The dramatically enhanced
performance over wide frequency range and wave headings is
shown in Fig. 6. The scattered waves by the motion of rear buoy
excite mutual cancellation against obliquely incident waves,
scattered waves by motion of rear membrane and front

buoy/membrane. In addition it shows insights of a physical
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Fig. 3a The reflection coefficient as function kk and @ for
Tf/K_f,':O.l, T,/K,j:O, t,v/ai=0.02 a//h=O.2,
a,/h=0.125 cu/h=0.125, d /h=1
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Fig. 3b The reflection coefficient as function ki and @ for
TJ/K ;=0.1, T,/K,;=0, t/a;=0.02, a/h=0.2,
a,/h=0.125, c¢4/h=0.125, d /h=2
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Fig. 3¢ The reflection coefficient as function k4 and ¢ for
T/K;=0.1, T,/K,=0, tia;=0.02, adh=0.2,
a,/h=0.125, c4/h=0.125, d./h=3
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Fig. 4 The reflection coefficient as function k4 and ¢ for
TH/K ;=0.1, T,/K,;=0, tia;=0.02, adh=0.2,
a,/h=0.125, c4h=0.05, cu/h=0.125, ¢, /h=0.05
cawlh=0.125, d Jh=1
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Fig. 5 The reflection coefficient as function k% and ¢ for
ailh=0.2,

T /K ;=0.1,
dJh=1

t,-/ai=0.02, C,‘/e/h=0.125,

Fig. 6 The reflection coefficient as function ki and ¢ for
Tf/KfJZOL Tr/Kd:O, TV/K,Q:O.L t;‘/a,':0.0Z,
ai/h=0.2, cp/h=0.125, d./h=1
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phenomena magnifying the wave trapping effects between two
systems. After takes off only upper mooring line (mooring type 1)
of each buoy, those two systems have same design parameters. For
this breakwater more severe scattered potential flow generated by
motions of two buoys and membranes in fluid field. Fig. 7. shows
the performance for T/K;=0, T/Ky=0.1, t/a;= 0.02,
a/h=0.2, cu/h=0.125, d./h=1 in which the resonance
regions characterized by sharp drop in efficiency.

When all gap is narrow like c¢u/h=0.05 for T,/K;=0,
Ti/Ky=0.1, 4/a;=0.02, a/h=0.2, dJ/h=1

complete reflections occur over wide frequency and incident wave

almost

angles except of narrow band of long wave frequency and
resonance frequencies as shown in Fig.8. Resonance of system
usually results, however, in failure of function or gives a damage of
system integrity. Thus every designer seeks methods to remove such
resonance in system. After tuning system to have asymmetric design
parameters, simply changing of gaps in its geometry as
¢yl h=0.125, c,/h=0.05, c¢z/h=0.05 and c,/h=0.125,
the resonance in Fig. 9. is slightly reduced when it compared to
that in Fig. 7.

The wave load is exponentially decaying downward direction to
water depth. Therefore the response of the submerged membrane
system will be quite different with that of surface-piercing case.
Since the rapid variation of the potential flow exists near the top
ends of structures.

Three different dual membrane systems without buoys have been
tested numerically: (casel) surface-piercing dual membrane extended
to sea floor, (case2) submerged dual membrane with free-surface
gaps, (case3) submerged dual membrane with free-surface/bottom
gaps. In Figs.10a~10b, motions of front membrane at frequency

kh=0.2,6.0 is shown for three different system with
non-dimensional membrane tension 7T=0.255, and T s
(T/pgh?). For kh=0.2 long wave region, motions of

membranes are significantly changed according to types of gaps.

The reflection coefficients for those three cases are
Rr=1.0,0.36,0.12, respectively. However, at high frequency
region kh=46.0 motions of submerged membrane are larger than
kh=0.2,

Rr=1.0,0.06,0.61. It is seen that the performance in long

those of and reflection coefficients varies as

waves is improved as the gaps decreased. When gap is small
compared to wavelength, only local waves are generated by front
membrane and excite the sinusoidal motion of the rear membrane.

Incident wave interaction with both submerged buoy/membranes
is quite complicated. It generates radiated waves and re-reflected
waves between two systems so that such scattered waves have
phase differences themselves.  Adjusting

among these phase

differences by gaps can make their wave amplitude offset
themselves. Therefore, a simple large motion of membranes and
buoys does not always aggravate its performance. Thus the motions
of membrane and buoy have to be checked against sharp or a small
kink resonance in its performance. Parameters of system tunings
includes gaps, radius of buoys, mooring types, mooring stiffness,
gaps, mass of buoy et al. In this study we found that most
significant parameter is mooring type and radius of buoys for this
dual submerged/floating system with surface/bottom gaps. The
resonance of system is important for its design and application in
the ocean environment. The one of well tuned up systems in this
presentation is the system adjusted by its mooring types, and its
efficiency is shown in Fig. 6.

Fig. 6 shows the performance for the dual submerged system

without upper mooring line (mooring type 2) of rear buoys for
T/K;=0.1, T,/K,=0, T,K,=0.1, a/h=a,/h=0.2,
calh=0.125, d./h=1. The motion of buoys and membrane
corresponding to Fig. 6 are depicted in Figs. 11~12, in which large
motion of buoys and membranes are apparently related to resonance
in performance. The motions of front buoy are apparently small
compared to those of rear ones since front one is strongly moored
by type 3 at side edge and joint of buoy. The overall shape of
sway and joint motion amplitude are quit similar to each other with
respect to the various ki and §. The magnitude of sway and roll
motions in front buoys are quite different with those of rear one.
The amplitude motion of joints of both buoy &= 7n,= 7+ Ry3,
however, are similar to each other in magnitude. The motion of
buoys is affected by initial tension of membrane for restoring forces
or excitations as shown in Eq. (25). Thus the sway and roll motion
is strongly coupled with a motion amplitude of the membrane
element near joint. In Fig. 1la, the resonance sway motion
mi/A=10.25 of front buoy at kh=1.3 behaves like skewed curve
slightly deviated to higher kh direction as @ is increased. It is
reduced to 7,/A=0.1 at the region of =285 and kh=3.0.
The rear buoy sway motion at resonance frequency in Fig. 11b,
however, keeps same magnitude at the corresponding frequencies
and angles. Along the skewed resonance curve in the plain of kh
and 6, the increased wave heading does not mitigate the amplitude
of rear buoy motion restrained by only joint mooring (mooring type
2).

Finally, Figs. 12a~12b shows the amplitude motions of front and
rear membranes. The pattern of motions of front membrane is
different with that of rear one except kh=1.2. It is mainly due to
different design parameters for both systems. In Figs. 12c¢~12f, the
amplitude of membrane motion drastically reduced except at
resonance frequencies as ¢ is increased from 45° to 82°. The
amplitudes of rear membrane motions |£,//A for various wave
headings 6=0" ,45° ,82° seem to be slightly varied as 0.41,
0.37, 0.33. The corresponding peak frequency migrates toward to
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Fig. 7 The reflection coefficient as function %% and § for
Ti/Kﬂ:O, TJ/Kp=0.1, ti/a;=0.02, ai/h=0.2,
C,’k/h=0.1253 dc/hzl

Fig. 8 The reflection coefficient as function ki and @ for
T/K =0, T{Kp=0.1, tila;=0.02, ai/h=0.2,
cwlh=0.05, d/h=1
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Fig. 10a Front membrane motion as function of vertical coordinate
v/ h for nondimensional wave number kkh=0.2, ¢ z/h=0(—0),
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Fig, 10b Front membrane motion as function of vertical coordinate
y/h for nondimensional wave number k=6, ¢ z/h=0(—10),

C///h:0125 & Cjb/h:()( ------- ) s
cplh=0.125( - ___)

c/h=0125 &

Fig. 9 The reflection coefficient as function ki and @ for
Ti/K =0, Ti/K»=0.1, tia;=0.02, a/h=0.2,
cylh=0.125, cp/h=0.05, ¢, /h=0.05, c/h=0.125,
d./h=1

Fig. 11a Sway motion of front cylinder as function k% and @ for
T//K/,':O.l, T,/KHZO, Ty/K,QZO.].y fl'/di:0.02,
ai/h=0.2, cp/h=0.125, d /h=1
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Fig. 11b Sway motion of rear cylinder as function &% and @ for
T//K//ZO.I, T,—/K71=0, Ty/Kyg:O-la

afh=0.2, ca/h=0.125, d /h=1

Fig. 1le Joint motion of front cylinder as function
t;‘/ai:O-Oz, Tf/K/J':Ol, T,/K,1=0, T,»/K,Q:O.l,

ai/h=0.2, ca/h=0.125, d /h=1

kh and ¢ for
tl»/ai=0.02,

‘“NUA

Fig. 11f Joint motion of rear cylinder as function k% and 6 for
. . . _— d o f
Fig. 11c Roll motion of front cylinder as function Ak and @ for TAK;=0., TJK,=0, T,JK,=0.1
Ti/K;=01 T,/K.=0 TJK;=0.1 tja;=0.02

tila;=0.02,
ailh=0.2, cy/h=0.125, d./h=1
aifh=0.2, cy/h=0.125, d Jh=1

Fig. 12a The motion of front membrane as a function of vertical
Fig. 11d Roll motion of rear cylinder as function 4% and 6 for

position y/h and kh for =0, T,/K;=0.1, T,/K,=0,
T/K;=0.1, T,K,=0, T,/K,=0.1, tja,=0.02

T,/K»=0.1, t/a;=0.02 a;/h=0.2,
@ailh=0.2, cux/bh=0.125, d.Jh=1
d.Jh=1

¢l h=0.125,
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Fig. 12b The motion of rear membrane as a function of vertical
position y/k and &k for =0, T,/K;=0.1, T,/K,=0,
T,/K»=0.1, t/a;=0.02, a/h=0.2, cu/h=0.125,
d/h=1

ENA

Fig. 12¢ The motion of front membrane as a function of vertical
position y/# and kh for =45, T/K;=0.1, T,/K,=0,
T,/K »=0.1, tj/a;=0.02, a/h=0.2, cu/h=0.125,
dJ/Jh=1

A

Fig. 12d The motion of rear membrane as a function of vertical
position y/h and khfor =45, T /K ;=0.1, T /K =0,
T,/K»=0.1, ti/a;=0.02, a/h=0.2, cax/h=0.125
dJh=1

high frequency values as k4=1.18,1.38,2.95. In vicinity of the
high wave heading #=82" large amplitude of membrane motion
at kh=2.95 does not affect the performance as shown in Fig. 6.
smaller |&1/A=1.85 at kh=1.48
suppresses slightly its efficiency. It is interesting to note that the
extraordinary large motions of buoy/membrane at resonance
frequency heavily in vicinity of lower wave headings suppress the

efficiency, but in vicinity of higher wave headings slightly
aggravate the performance.

However, amplitude

SUMMARY AND CONCLUSIONS

The interaction of oblique incident waves with dual tensioned,
inextensible, vertical flexible membranes hinged at some distance
from the sea floor and attached to rigid cylindrical submerged
buoys at their tops, was solved in the context of two-dimensional

Fig. 12e The motion of front membrane as a function of vertical
position y/h and khfor =82, T /K ;=0.1, T,/K =0,
T,/K»=0.1, t/a;=0.02, a/h=0.2, ca/h=0.125
dJh=1

Fig. 12f The motion of rear membrane as a function of vertical
position y/h and kh for 6=82" , T/K;=0.1, T,/K, =0,
T,/K»=0.1, t/a;=0.02, ai/h=0.2, cux/h=0.125
dJh=1
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linear wave-body interaction theory. For numerical approaches to
more practical and eco-friendly buoy-membrane systems, a boundary
element program was developed based on a discrete-membrane
dynamic model and simple-source distribution over the entire fluid
boundaries. A
membrane is infinitely thin. The solutions of each domain were

three-domain BEM was employed since the

matched at the respective membrane surfaces. Membrane motions
and velocity potentials were solved simultaneously because the
body-boundary condition on the membrane is not known in
advance, as other hydro elastic problems. The accuracy and
convergence of the developed computer program are checked using

the energy-conservation formula and convergence test.

Using the developed computer program, the performance of fully
submerged dual systems in oblique waves was tested with various
breakwater design parameters, and wave conditions. From these
examples, it is shown that the use of the submerged dual flexible
membranes can significantly increase the overall wave blocking
efficiency in normal and oblique incident waves except long waves.
Allowing motion of buoys, the mutual cancellation effect of incident
waves and scattered waves significantly enhance the performance of
breakwaters. Using a properly devised asymmetric system, which
can complement each other, we can further enhance the efficiency
for T/Kqy=0, T/Ky=0.1, t/a;=0.02, ailh=0.2,
cy/h=0.125, cp/h=0.05,c,/h=  0.05, c,/h=0.125,
d./h=1. In most cases, mooring type, gaps, and size of buoy for
sufficiently large membrane tension needs to be provided to
guarantee high performance over a wide range of wave frequencies.
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