• 제목/요약/키워드: Momentum model

검색결과 795건 처리시간 0.024초

A Numerical Study on the Karman Vortex Generated by Breaking of Mountain Wave

  • Sung-Dae Kang;Fujio Kimura
    • 한국환경과학회지
    • /
    • 제1권2호
    • /
    • pp.105.2-117
    • /
    • 1992
  • The formation mechanism of the vortex streets in the lee of the mountain Is Investigated by a three-dimensional numerical model. The model is based upon the hydrostatic Boussinesq equations in which the vertical turbulent momentum flux is estimated by a turbulence parameterization scheme, but the horizontal viscosity is assumed to be constant. The results show that Karman vortex streets can form even without surface friction in a constant ambient flow with uniform stratification. The vortex formation is related to breaking of the mountain wave, which depends on the Froude number (Fr). In the case of a three-dimensional bell-shaped mountain, the wave breaking occurs when Fr is less than about 0.8, while a barman vortex forms when Fr is less than about 0.22. Vortex formation also depends on Reynolds number, which is estimated from the horizontal diffusivity. The vortex formation can be explained by the wave saturation theory given by Lindzen (1981) with some modification. Simulations in this study show that in the case of Karman vortex formation the momentum flux in the lower level is much larger than the saturated momentum flux, whereas it is almost equal to the saturated momentum at the upper levels as expected from the saturation theory. As a result, large flux divergence is produced in the lower layer, the mean flow is decelerated behind the mountain, and the horizontal wind shear forms between unmodified ambient wind. The momentum exchange between the mean flow and the mountain wave is produced by the turbulence within a breaking wave. From the result, well developed vortices like Karman vortex can be formed. . The results of the momentum budget calculated by the hydrostatic model are almost the same as nonhydrostatic results as long as horizontal scale of the mountain is 10 km. A well developed barman vortex similar to the hydrostatic one was simulated in the nonhydrostatic case. Therefore, we conclude that the hydrostatic assumption is adequate to investigate the origin of the Km8n vortex from the viewpoint of wave breaking.

  • PDF

A Numerical Study on the Karman Vortex Generated by Breaking of Mountain Wave

  • Kang Sung-Dae;Kimura Fujio
    • Environmental Sciences Bulletin of The Korean Environmental Sciences Society
    • /
    • 제1권2호
    • /
    • pp.105-117
    • /
    • 1997
  • The formation mechanism of the vortex streets in the lee of the mountain is investigated by a three-dimensional numerical model. The model is based upon the hydrostatic Boussinesq equations in which the vertical turbulent momentum flux is estimated by a turbulence parameterization scheme, but the horizontal viscosity is assumed to be constant. The results show that Karman vortex streets can form even without surface friction in a constant ambient flow with uniform stratification. The vortex formation is related to breaking of the mountain wave, which depends on the Froude number (Fr). In the case of a three-dimensional bell-shaped mountain, the wave breaking occurs when Fr is less than about 0.8, while a Karman vortex forms when Fr is less than about 0.22. Vortex formation also depends on Reynolds number, which is estimated from the horizontal diffusivity. The vortex formation can be explained by the wave saturation theory given by Lindzen (1981) with some modification. Simulations in this study show that in the case of Karman vortex formation the momentum flux in the lower level is much larger than the saturated momentum flux whereas it is almost equal to the saturated momentum at the upper levels as expected from the saturation theory. As a result, large flux divergence is produced in the lower layer, the mean flow is decelerated behind the mountain, and the horizontal wind shear forms between unmodified ambient wind. The momentum exchange between the mean flow and the mountain wave is produced by the turbulence within a breaking wave. From the result, well developed vortices like Karman vortex can be formed. The results of the momentum budget calculated by the hydrostatic model are almost the same as nonhydrostatic results as long as horizontal scale of the mountain is 10 km. A well developed Karman vortex similar to the hydrostatic one was simulated in the nonhydrostatic case. Therefore, we conclude that the hydrostatic assumption is adequate to investigate the origin of the Karman vortex from the viewpoint of wave breaking.

  • PDF

기체 중심 스월 동축형 분사기가 장착된 모형연소기의 운동량비 변화에 따른 연소불안정성 분석 (Effect of Momentum Flux Ratio on Combustion Instabilities in a Model Combustor with a Gas-Centered Swirl Coaxial Injector)

  • 손채훈;김명섭;;윤영빈
    • 한국추진공학회지
    • /
    • 제24권4호
    • /
    • pp.25-32
    • /
    • 2020
  • 모형 연소기에서 동축형 분사기에 의한 연소불안정성을 운동량비 변화에 따라 수치적으로 분석하였다. 실제 로켓 엔진의 경계조건을 기반으로 총 5개의 운동량비를 선택하였다. 운동량비가 증가할수록 분사기 출구에서의 확산각도는 감소하는 경향을 보였으며, 축방향 운동량이 증가할수록 연소기 내부의 압력진폭이 크게 감소함을 확인하였다. 동적 모드 분해 기법(dynamic mode decomposition)을 통해 연소기내의 음향 모드를 파악하였고 관심 섭동 주파수를 갖는 2L 모드(mode)의 감쇠계수를 구하고 이를 통해 운동량비가 증가할수록 연소기의 안정성이 증가함을 보였다.

비압축성 재생형 기계에 대한 개선된 운동량 교환 이론 (I) - 수력학적 모델 - (Improved Momentum Exchange Theory for Incompressible Regenerative Turbomachines (I) - Hydraulic Model -)

  • 박무룡;정명균;유일수
    • 대한기계학회논문집B
    • /
    • 제28권10호
    • /
    • pp.1238-1246
    • /
    • 2004
  • Momentum exchange theory has been generally used for an analysis of the regenerative turbomachines due to its direct description of the complicate circulatory flow. However, because its application is limited only to linear region and its model equations are incomplete on three variables, it needs further refinements. In the present study it is improved by introducing a central pivot of circulatory flow. Also, by assuming linear circulatory velocity distribution, mean radii of inlet and outlet flows through the impeller are newly suggested. By applying control volume analysis to both linear region and the acceleration region, the governing equation on the circulatory velocity is derived. As a result, systematic performance analysis on the entire region of the incompressible regenerative turbomachines can be carried out based on the proposed model equations.

블랙리터만 모형을 이용한 섹터지수 투자 전략 (Sector Investment Strategy with the Black-Litterman Model)

  • 송정민;이영호;박기경
    • 경영과학
    • /
    • 제29권1호
    • /
    • pp.57-71
    • /
    • 2012
  • In this paper, we deal with a sector investment strategy by implementing the black-litterman model that incorporates expert evaluation and sector rotation momentum. Expert evaluation analyzes the relative performance of the industry sector compared with the market, while sector rotation momentum reflects the price impact of significant sector anomaly. In addition, we consider the portfolio impact of sector cardinality and weight constraints within the context of mean-variance portfolio optimization. Finally, we demonstrate the empirical viability of the proposed sector investment strategy with KOSPI 200 data.

비압축성 재생형 기계의 손 실 모델 개선에 관한 연구 (Study on Improved Loss Model for Incompressible Regenerative Turbomachines)

  • 최원철;유일수;정명균
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2008년도 춘계학술대회논문집
    • /
    • pp.341-344
    • /
    • 2008
  • The complicated helical flow formed in the regenerative turbomachines is usually decomposed into a peripheral component and a circulatory component. On the basis of the momentum exchange theory, the circulatory flow plays a critical role of imparting angular momentum to the peripheral flow. Therefore, the accuracy of performance prediction is dominated by the circulatory flow modeling. Until now the circulatory flow has been accounted of a standstill flow normal to the peripheral flow. However, the circulatory path from the impeller exit to the re-entrance inlet is exposed to the adverse pressure gradient, so it would be more realistic to describe that the circulatory flow is formed on the skewed plane not perpendicular to the peripheral flow. Present study suggests new circulatory flow loss model including the effect of adverse pressure gradient and modifies the effective circulatory flow rate and circulatory pivot which were previously published.

  • PDF

비압축성 재생형 기계에 대한 개선된 운동량 교환 이론 (II) - 손실 모델 및 성능 예측 - (Improved Momentum Exchange Theory for Incompressible Regenerative Turbomachines (II) - Loss Model and Performance Prediction -)

  • 박무룡;정명균;유일수
    • 대한기계학회논문집B
    • /
    • 제28권10호
    • /
    • pp.1247-1254
    • /
    • 2004
  • In momentum exchange theory the loss models for the circulatory flow is critically important. But because of lack of loss model on the circulatory flow, analysis model on regenerative turbomachines is not available in the open literature. In the present study circulatory loss is evaluated by combining bend's losses. Through the comparison with the previous experimental data on linear pressure gradient, a combination factor is suggested in terms of the aspect ratio of a channel. Applying this factor to two kinds of regenerative blowers the predicted results are found to be in good agreement with the experimental data of the overall performance and the head distribution along the rotational direction. Especially, the comparison with the head distribution demonstrates the accuracy of hydraulic model and loss model suggested in the present study. And the comparison with the overall performance confirms the validness of physical models as well as loss models suggested in the present study.

발달 단계의 축대칭 열대저기압의 각운동량에 관한 연구 (Study on the Angular Momentum of Axisymmetric Tropical Cyclone in the Developing Stage)

  • 강현규;정형빈
    • 대기
    • /
    • 제23권1호
    • /
    • pp.1-11
    • /
    • 2013
  • The angular momentum transport of an idealized axisymmetric vortex in the developing stage was investigated using the Weather Research and Forecast (WRF) model. The balanced axisymmetric vortex was constructed based on an empirical function for tangential wind, and the temperature, geopotential, and surface pressure were obtained from the balanced equation. The numerical simulation was carried out for 6 days on the f-plane with the Sea Surface Temperature (SST) set as constant. The weak vortex at initial time was intensified with time, and reached the strength of tropical cyclone in a couple of days. The Absolute Angular Momentum (AAM) was transported along with the secondary circulation of the vortex. Total AAM integrated over a cylinder of radius of 2000 km decreased with simulation time, but total kinetic energy increased rapidly. From the budget analysis, it was found that the surface friction is mainly responsible for the decrease of total AAM. Also, contribution of the surface friction to the AAM loss was about 90% while that of horizontal advection was as small as 8%. The trajectory of neutral numerical tracers following the secondary circulation was presented for the Lagrangian viewpoint of the transports of absolute angular momentum. From the analysis using the trajectory of tracers it was found that the air parcel was under the influence of the surface friction continuously until it leaves the boundary layer near the core. Then the air parcel with reduced amount of angular momentum compared to its original amount was transported from boundary layer to upper level of the vortex and contributed to form the anti-cyclone. These results suggest that the tropical cyclone loses angular momentum as it develops, which is due to the dissipation of angular momentum by the surface friction.

비선형 에크만 분출 모델 (Non-Linear Ekman Pumping Model)

  • 박재현;김정환;김동균;배석태;김정렬
    • 한국마린엔지니어링학회:학술대회논문집
    • /
    • 한국마린엔지니어링학회 2006년도 전기학술대회논문집
    • /
    • pp.305-306
    • /
    • 2006
  • Developed in this study is a nonlinear Ekman pumping model to be used in simulating the rotating flows with quasi-three-dimensional Navier-Stokes equations. In this model, the Ekman pumping velocity is given from the solution of the Ekman boundary-layer equations for the region adjacent to the bottom wall of the flow domain; the boundary-layer equations are solved in the momentum-integral form. The developed model is then applied to rotating flows in a rectangular container receiving a time-periodic forcing. By comparing our results with the DNS and experimental data we have validated the developed model. We also compared our results with those given from the classical Ekman pumping model. It was found that our model can predict tile rotating flows more precisely than the classical linear model.

  • PDF

비선형 Ekman 펌핑 모델의 개발 (Development of a Nonlinear Ekman Pumping Model)

  • 서용권;박재현
    • 대한기계학회논문집B
    • /
    • 제30권6호
    • /
    • pp.568-577
    • /
    • 2006
  • Developed in this study is a nonlinear Ekman pumping model to be used in simulating the rotating flows with quasi-three-dimensional Navier-Stokes equations. In this model, the Ekman pumping velocity is given from the solution of the Ekman boundary-layer equations for the region adjacent to the bottom wall of the flow domain; the boundary-layer equations are solved in the momentum-integral form. The developed model is then applied to rotating flows in a rectangular container receiving a time-periodic forcing. By comparing our results with the DNS and experimental data we have validated the developed model. We also compared our results with those given from the classical Ekman pumping model. It was found that our model can predict the rotating flows more precisely than the classical linear model.