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The formation mechanism of the vortex streets in the lee of the mountain is investigated
by a three-dimensional numerical model. The model is based upon the hydrostatic
Boussinesq equations in which the vertical turbulent momentum flux is estimated by a
turbulence parameterization scheme, but the horizontal viscosity is assumed to be constant.

The results show that Karman vortex streets can form even without surface friction in a
constant ambient flow with uniform stratification. The vortex formation is related to
breaking of the mountain wave, which depends on the Froude number (Fr). In the case of a
three-dimensional bell-shaped mountain, the wave breaking occurs when Fr is less than
about 0.8, while a Karman vortex forms when Fr is less than about 0.22. Vortex formation
also depends on Reynolds number, which is estimated from the horizontal diffusivity.

The vortex formation can be explained by the wave saturation theory given by Lindzen
(1981) with some modification. Simulations in this study show that in the case of Karman
vortex formation the momentum flux in the lower level is much larger than the saturated
momentum flux, whereas it is almost equal to the saturated momentum at the upper levels
as expected from the saturation theory. As a result, large flux divergence is produced in the
lower layer, the mean flow is decelerated behind the mountain, and the horizontal wind shear
forms between unmodified ambient wind. The momentum exchange between the mean flow
and the mountain wave is produced by the turbulence within a breaking wave. From the
result, well developed vortices like Karman vortex can be formed.

The results of the momentum budget calculated by the hydrostatic model are almost the
same as nonhydrostatic results as long as horizontal scale of the mountain is 10 km. A well
developed Karman vortex similar to the hydrostatic one was simulated in the nonhydrostatic
case. Therefore, we conclude that the hydrostatic assumption is adequate to investigate the
origin of the Karman vortex from the viewpoint of wave breaking.

discussed the similarity to the Karman

streets behind cylinders in laboratories.

vortex

They

Mesoscale eddy streets in the lee of islands
are often observed in satellite photographs.
Figure 1 shows well developed Karman vortex
streets in the lee of Che-Ju island. Hubert and
Krueger (1962) found that there are some eddy
They discussed the
that
gravity waves accompanied with a low inversion
layer should be important.

(Chopra and Hubert, 1965, Tsuchiya,

patterns in photographs.

formation mechanism and pointed out

Many researcher
1969)

found that characteristic parameters of the eddies,
such as the lateral and longitudinal spacing and
rate of shedding of eddy pairs, agree well with
those of laboratory Karman vortex streets. They
concluded that the formation mechamism of the
eddies in the atmosphere is the same as the
the
molecular viscosity, which must be replaced by

laboratory Karman vortices except for

the lateral eddy viscosity. They also suggested
that it is possible to estimate the eddy viscosity
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Fig. 1. Satellite image for 182 4 February 1987.
Che-Ju island can be seen in the central
part of the photograph. Karman vortex is
observed in the lee of Che-Ju island.

from the characteristic parameters of the atmo-
spheric eddies. Atkinson (1981) summarized the
eddy viscosity estimated by the method men-
tioned above.

Rusher and Deardorff (1982) carried out a
numerical simulation of vortex streets by using a
model, which
included topography and surface friction. Charac-

two-dimensional  mixed-layer

teristics of the simulated eddies were similar to
those in the atmosphere, but the tendency on the
horizontal diffusivity was not clear. Yagi et al.
(1987) studied vortex streets by use of a linear
solution and showed that vortex streets are
formed in the horizontal-shear flow by shear
instability. He also showed that lee vortex streets
can form without surface friction in the lee of a
mountain by using a two-dimensional shallow-
flow numerical model.

By laboratory experiments, Brighton (1978)
showed that the features of the lee vortices
depend on the strength of the stratification.
(1989)  studied

Smolarkiewicz and Rotunno

stratified flow over an isolated mountain with a
three-dimensional non-hydrostatic model. They
found that a stationary vortex pair can form
without surface friction and that the mechanism
is associated with the dynamics of gravity
waves. This fact implied that atmospheric vortex
streets in lee of islands may be also formed
without surface friction. They explained that the
vortex pair is generated by a barochnic process
which is non-linear but isentropic. Potential
vorticity is conserved by this theory, so that it
seems to be difficult to use this mechanism to
explain the formation of vortex streets, which
can exist far from the mountain.

Mesoscale eddies are also observed inland
(Harada, 1981). These eddies, however, are not
formed only by pure mechanical process. Kimura
(1986) and McGregor and Kimura (1989) studied
the eddies observed in Japan and in Australia,
respectively, using a numerical model and found
that the thermal effect of the mountain located
windward of the vortex is important. The
mechanical effect of the mountain, which is
similar to the formation mechanism of the
eddies in the lee of the isolated island, is
important for some eddies. Satomura (1986)
investigated instability of shear flow in shallow
water and suggested that some topography can
form mesoscale vortex in horizontal shear flow.

Spelt and Etling (1989a) and (1989b) reviewed
the vortex streets observed in the atmosphere
and laboratory and also those simulated by
numerical models. They pointed out that it must
be investigated whether the formation mechanism
presented by Smolarkiewicz and Rotunno (1989)
is also effective in atmospheric flow with a
convective boundary layer under elevated inver-
sion. They also pointed out that the formation of
the vortex depends not only on Fr but also on
Rossby number, so that further investigation of
the effects of Coriolis parameter must be done.
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In the reply to the Smith’s (1989) comment,
Smolarkiewicz and Rotunno (1989) showed a time
-dependent calculation illustrating that lee vortices
(reversed flow, circulating motion, etc) can form
before PV (Potential Vorticity) is produced, and
that therefore PV production is a result, rather
than a cause of lee-vortex formation. This mean
there is another mechanism which can become
the origin of lee-vortex formation.

Several, more recent numerical studies have
examined additional aspects of the flow of a
stratified fluid past a tall isolated obstacle. These
studies have demonstrated that the transition
from the “flow over” to the “flow around” regime
shows some of the characters of a bifurcation
(Smith, 1993), in which the dimensionless moun-
tain height (inverse of Froude number) acts as a
control parameter. Other aspects of the flow
-around problem have been studied using the
concept of gravity-wave breaking (Durran, 1995;
Olafsson and Bougeault, 1996, 1997; Schar and
Durran, 1997).

In this study, the formation mechanism of the
vortex streets is investigated by a three-dimen-
stonal hydrostatic model. The vortex formation
can be expected to be related to the breaking of
a mountain wave, so that the model must have
sufficient accuracy to simulate mountain waves.

2. Numerical model

The governing equations and numerical scheme
of the model are the same those developed by
Kikuchi et al. (1981), and modified by Kimura
and Arakawa (1983). The governing equations
are Boussinesq hydrostatic equations which are
written in a terrain-following coordinate system
as follows:
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Equation of motion:
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at TTax oy T oz

i A zr—2" 9zg

oIl 0 du
—hO G TEh g~ oy t o (MKirg,)

2
d du 2r 0 du
+ ay(hKH ay )+—‘h 3z (hK, 3z 2.1

ohv_ . Ohvu | dhwv | dhvw' _
at + ox + dy + 92"
ol | 60 2r=2 02¢ 9 . Ov
—h® dy +eh ® zr Oy + ax(hK” ax)
2
a vy, 21 0 v
+ ay (hKH ay)+ h az. (hKv 32' » (22)

Equation of thermodynamics:
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Continuity equation:
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Hydrostatic equation:
ol _ b g6
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where 2" is the terrain-following vertical

coordinate and is defined as:
Z‘ = ZT(Z*'ZG)/h and & = Z2r—R2¢, (26)

in which z7 and z5 are the levels of the top

and the ground surface of the model atmosphere,
respectively.
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3. Computational domain and boundary
conditions

The computational domain is a rectangle
shown in Fig. 2, which is covered by 110 grid
points in the «x direction and 66 in the v
direction. The model atmosphere is divided into
42 levels with uniform interval of 170 m except
for the lowest layer, whose thickness is 10 =
The boundary conditions for momentum and heat
equations at the ground surface are assumed to
be those of free slip and heat insulation.

The radiation condition given by Orlanski
(1976) is adopted for windward and leeward
lateral boundaries. To suppress the computational
mode generated at the lateral boundary, horizon-
tal diffusivity increases exponentially forward the

Model domain and Boundary Condition
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Fig. 2. Computational domain and boundary condi-
tions, a side view (top) and a plane (bottom).

boundary. The maximum diffusivity does not
exceed ten times that in the central part of the
domain, because a too large diffusivity sometimes
destabilizes the radiation-condition scheme. Side
boundaries ( y-direction) are assumed to be peri-
odic.

The top boundary should be treated carefully
because internal gravity waves are very important
for formation of the vortex streets as mentioned
later. Gravity wave radiation condition given by
Bougeault (1983) and Klemp and Durran (1983)
is adopted for the top boundary, so that the
internal waves propagating upward are absorbed
at the top boundary without reflection.

The shape of a mountain is given by the
following equation:

- h
= TEAA T o

where 7= (x—x)%+ (y—»)% x, and y, are
coordinates of the center of the mountain, and a
is its half width. Since an analytical linear
solution for internal waves over this mountain
has been given by Smith (1980), the numerical
solution can be verified for sufficiently low
mountain height. Radius of the mountain « and
grid interval (4x) are assumed to be 10 km and
3 km, respectively.

4. Comparison with linear theory

Figure 3a shows horizontal contours of vertical
velocity at the level of 1325 m normalized by
Nhja, where U is the ambient wind velocity (air
flow is from left to right in the figure).

In this study, the Reynolds number (Re) is
deformed as

_ 2aU _ 2aU
Re = “p= = 5.020Udx 4D
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implying the Reynolds number of 333 in the
numerical simulation. Brunt-Vaisala frequency N
and ambient velocity U are assumed to be
0.01 s ! and 10 ms "', respectively. The moun-
tain height is chosen to be 100 m so that Fr is
7.4, the value at linear model should be
accurate. Figure 3b shows the same contours
obtained by the linear model. The horizontal
distribution of the vertical velocity by the
numerical model agrees quite well with that of
the linear model.

Total downward momentum flux F4 (defined

in sec. 7) of the mountain waves normalized by
that given by the inviscid linear theory (F.) is

Vertical Velocity (analytic solution)
97 T

F— (- ¢ -
U=10m/s R

Y-Direction (km)
)

Vertical Velocity (numerical solution)
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Fig. 3. (a) Horizontal contours of vertical compo-
nent of the velocity at the level of 1325
m, normalized by Nh/a. Mountain height
is 100 m (Fr=7.4). (obtained by the
numerical model), (b) The same figure as
(a), but given by the analytical linear
model.

shown in Fig. 4a in cases of Re = 333, 250,
and 200. As predicted by the linear theory, the
total momentum flux is constant with height, and
equal to (Smith, 1989):

F, = pzﬂNtha ) (4.2)

The figure shows that the fluxes given by the
numerical model decrease slowly with height.
The decrease rate is larger in case of smaller Re
number, ie., larger horizontal diffusivity. The
reason for the decrease is the dissipation by the
horizontal diffusion, and truncation error of finite-
difference approximation also may contribute to
some degree. In the case of Re = 333, the
momentum flux is almost equal to the linear
value at the surface, but decreases to about 81
percent at the level of 2.5 km.

Vertical Profile of Momentum Flux
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Comparison between hydro and nonhydro case
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Fig. 4. (a) Vertical profiles of momentum flux
normalized by F;, which is momentum
flux given by the linear theory (eq.4.2).
Three cases with different Re number
(333, 250 and 200) are plotted. Mountain
height is 100 m (Fr=17.4). (b) Com-
parison of momentum fluxes between
hydrostatic and nonhydrostatic result in
case of dx =3 km.

5. Accuracy of the hydrostatic
assumption

Vertical momentum flux shown in Fig. 4a
(4dx = 3 km case), which is obtained under the
hydrostatic assumption, is compared with a
nonhydrostatic result.

Figure 4b shows the vertical profile of total
downward momentum fluxes Fr normalized by

the inviscid linear momentum flux (F,) in cases
of both hydrostatic and nonhydrostatic assump-
tion. The figure shows that the vertical profile of
momentum fluxes calculated by the hydrostatic
model is almost the same as in the non-
hydrostatic case. Well developed Karman vortex
similar to Fig. e was simulated with a
nonhydrostatic model (no figure here). Therefore,
hydrostatic model is sufficient to study the origin
of Karman vortex from the viewpoint of wave
breaking as long as the horizontal scale of a
mountain is greater or equal to 10 Am.

6. Vortex formation

Figures 5a-5¢ show streamlines at z° =
1000 m for the case of Re = 333, U =
10 ms™ and N = 0.014 s™' for mountain
height of 200 m, 500 =, 1000 », 1500 m, and
3200 m, respectively. To emphasize the distur-
bance, 75 percent of the ambient velocity U has
been subtracted from the velocity field. Figure 5a
shows the three dimensional hydrostatic mountain
waves, which have been analyzed by Smith
(1980) with a linear model. No vortex forms in
this case. The wave-like disturbance becomes
larger with the increase of mountain height (see
Fig. 5b and 5¢), and a pair of lee vortices forms
when mountain height is 1.5 Am (see Fig. 5d).
The vortex pair seems to be almost stationary.
Figure 5¢ (A = 3.2 km) shows a vortex street
which resembles the Karman vortex in the real
atmosphere. This result shows that the vortex
forms without either inversion or surface friction.

As mentioned above when Fr number is large
enough, the solution is close to the linear
mountain waves. If Fr number becomes smaller,
then wave breaking occurs, namely, the vertical
gradient of the isothermal surface becomes large,
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and then Ri number becomes small generating
turbulence which gives large vertical diffusivity
over the mountain. For even smaller Fr number,
a pair of stationary vortices forms in the lee of
the mountain. The non-stationary vortex street
forms only when Fr is less than about 0.22. In
case of Re = 250, however, it is difficult to
find moving vortices like the Karman vortex,
though the flow is not completely stationary in
the lee of the mountain. When Re is 200, only a
pair of stationary vortices can be seen in the lee
of the mountain. The periodic lateral boundary
sometimes interrupts the vortex formation. To
form the vortex, the distance between the
boundaries must be at least 17—-20 times larger
than e, the radius of the mountain.

d) h=1.5km, Fr=0.48

a) h=0.2km, Fr=3.57

_——/—\—’

e) h=3.2km, Fr=0.22

= @

)
= e
SR E

=

Fig. 5. Streamlines at the level of 1 Am, for the
case Re = 333, U= 10ms !, N=
0.014 s~! in which 75 percent of the
ambient velocity U has been subtracted in
order to emphasis the disturbance.
Mountain height and Fr number are
shown in each figures indicated by a—e.

Y-Direction (km)
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The streamlines of the flow from which 75
percent of the mean velocity has been subtracted
shows roughly relative velocity field of the
vortex, because the mean speed of the vortex
center is observed to be about 75 percent of the
mean flow (Atkinson, 1981). The vortex street
can be only observed by cloud pattern in satellite
pictures. The cloud pattern reflects relative
velocity rather than absolute velocity, so that the
subtracted streamlines can be comparable with
these observation.

The subtracted streamlines emphasize vortices.
Figure 6, which corresponds to Fig. 5e, but with
the streamlines of total velocity, shows only the
first two vortices. The third one has been quite
deformed.

In the stably stratified atmosphere, turbulence
derives from shear in the mean wind. The route
by which the flow switches from the mean flow
to a turbulent state is complex and poorly
understood, but it is very likely that wave
instabilities play an essential intermediate role
(Chimonas, 1978). The wave breaking can be
detected by a high values of vertical diffusivity,
where maximum steepening of potential tempera-
ture isosurfaces is observed.

h=3.2km, Fr=022

X~-Direction (km)

Fig. 6. The same as Fig. 5e, but for total velocity
(without subtraction).



112 Sung-Dae Kang and Fujio Kimura

Figure 7 shows a vertical cross section of
isentropes (thin solid line) and vertical diffusivity
(thick solid line) in the case of Karman vortex
(see Fig. 5e). As shown in this figure, the
maximum diffusivity is obtained where the air is
rising (hydraulic jumps) in the lee of the moun-
tain. In the case of Karman vortex (see Fig. 5e),
the maximum steepness of isentropes and the
maximum concentration of vertical diffusivity are
observed after the flow passed the bottom part
of mountain (about 0.5 km height). Therefore, the
possible wave breaking could be expected in that
region. In this study, the onset of wave breaking
is observed after Fr is less than 0.8 (see Fig.
8). At the onset of wave breaking, the vertical
diffusivity significantly,
typical value of 300 m%s L.

increases reaching a

Detection of Turbulence

Altitude (km)

0. 80. 160. 240. 320.
Horizontal Distance (km)

Fig. 7. The vertical cross section of isentropes
and vertical diffusivity in the case of
Karman vortex (see in the case e of both
Fig. 5 and Fig. 8).

Detection of Wave Breaking

100.00 £ T T T T T T T T

n i

[}

> r Linear

a

Y 1000 2+=0

| F

g C

g s

I

o -

zx Z+=2.5Km

3 100 --——-————bf S —

= F

g F Stil  Kerman

‘E: - vortex vortex

] o F-- ——>

g a

5 010 F

o Breaking

< o

e

° L

= L
N =0.014/s
Re=333

0.01 n N T B A W | 1 2 i1 134

110l

TR RN |

1.
Maximun Height of Topography (km)
Li L | | | { 1 f {

10.

60 40 30 20 10 03 o2 0.1
Froude Number

Fig. 8. Integrated momentum fluxes at the level
of 2¥=0 (ie, at the surface; indicated
by solid line (x)), 2" =2.5 &m (solid line
(0)) and the flux given by the linear
theory as functions of the mountain
height. Momentum fluxes were normalized
by the saturated momentum flux Fg (see

eq8.1). Breaking point is the minimum
mountain height over which turbulence is
generated and the vertical diffusion occurs
due to the wave breaking.

7. Momentum budget in z* coordinate
system

in the lee of the
mountain implies that some drag of the mountain

Existence of vortices

acts in the lower atmosphere in spite of no
surface friction. This drag may be caused by the
non-linear mountain waves. To investigate this,
an estimate of the momentum budget is useful.
To calculate the momentum budget, the following
momentum equation of x component is used.
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where ¢ represents horizontal viscosity terms
operating in z* coordinate. Here, the ambient

wind velocity U and deviation #  are defined as:
w= Utu , (7.2)

where Uis a constant.

Terrain-following coordinates system defined
by eq. (26),
estimate momentum budget though the numerical

however, is not convenient to

model is written in it. Therefore, another simpler
terrain coordinate system is defined as follows:

2t =x, 9t =y, 2" = z2-25 . (13)

Using this coordinate system, the momentum
equation of x component (eq.7.1) is transformed
to :

= v*t.F, (74)

where F is flux vector of x component momen-
tum and defined by :

—un  —OI 0 H,
Flo=| -—wu + 0 + H,J
—w'u + OI ch K,,aa;i H.
(75)
where v * is the operator vector defined as :
vt = (5%, 2 9oy, 18

ax* ayt 7 oz

The first term of the right hand side is
momentum flux by the grid scale flow, which
includes mountain waves. The second term in eq.
(75) is the vertical viscosity term. The last term
is the momentum flux by horizontal viscosity

operating in z” plane, which is given by :

Ju Ju
H ox* ta, 9z
* 0 3
{Hy} =Ky a;i +a, a;i
z 0 d 2
a, axu+ +a, a;i -ib(ar?,+ari)¥u+
(7.1
- 2z 9z .z 9z
where a4 = 2T —R¢g ox = Zr—R¢g 8y.

Total momentum drag D of the mountain is
given by z* component of F(z"=0) integrated
in a large enough area including the mountain.
Since w* and « are zero on the ground surface,

D is given by:
D= p@ff Haz@ ds* (7.8)

where boundary of integration area S* must be
far enough from the mountain.

#(z")

Integrated vertical momentum flux

caused by grid scale flow is defined by :
YL + _5_3_0_ +

#Wz") = pffg(*w u +0l-57)ds" , (79

and total integrated vertical momentum flux

F1(z*) is given by :

FT(Z+) =

W rof [ K2 as+of [ Has (710

On the other hand, the wave drag produced by
the linear model is given by eq. (4.2).

8. Vertical momentum flux of the
simulated flow

The effects of non-linear mountain wave
caused by wave breaking can be detected by
total integrated momentum fluxes normalized by
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saturated momentum fluxes at two levels.

In Fig. 8 the total integrated momentum
fluxes at the levels of z2'=0 and 2™ =
2.5 km (=3.5U/N) are shown with stars (%)
and open circles (o), respectively. The scales on
the abscissa are the logarithm of the mountain
height (top) and an inverse Fr number (bottom).
In the figure, F;, the integrated momentum flux

given by the linear theory, is illustrated with a
solid line. The line shows that F, is propor-
tional to the square of the mountain height.

As long as mountain height is less than about
900 m, momentum fluxes of numerical model (*
and o) are close to the linear solution F,.
However, numerically computed fluxes increase
more rapidly with mountain height than the
analytical one. Rapid increase is likely due to
nonlinearity of internal gravity waves. Momen-
tum flux at the surface (*) is always larger than
that at the level of 2.5 km (0), due to the
effects of horizontal viscosity as explained earlier.

For a mountain higher than about 900 =, the
vertical diffusivity increases over the mountain,
since wave breaking occurs. As a result, the
numerically computed momentum flux suddenly
becomes different than the linear solution. Fr
number at this point is a so called ’‘critical
Froude number (Frc) and is estimated to be
about 0.8 in this case. If Fr is less than Fre,
internal  waves longer carry
momentum as efficiently as linear waves do. The

can not any

numerical results show that the rate of change
of Fr(2.5 km) is negative or quite small,
whereas Fr (0) still increases. The difference
between Fr(0) and Fr (2.5 km) increases with
mountain height. The difference implies that the
horizontal velocity up to 2.5 kn is to be
decelerated in the lee of the mountain, forming
horizontal wind shear.

According to linear theory, the total momen-
tum flux of mountain waves, F, is proportional
to the square of the mountain height. Due to the
wave breaking (i.e, nonlinear effects), the
mountain waves propagating into a stratified
layer will be saturated with the maximum value
of the momentum flux, which depends on N
(Lindzen, 1981).

The magnitude of the saturated momentum
flux is estimated to be the same order of
magnitude as the linear flux for the mountain
height for which F» number is equal to 1. This
mountain height is a minimum height which
would generate wave breaking. This saturated
momentum flux is estimated as:

3

F, = pfﬂﬁa . 8.1)

Figure 9 shows the total momentum flux
normalized by the saturated momentum flux ( F)

Vertical Profile of Momentum Flux Normalized by Fs

3. — — T v T y

ALTITUDE (Km)

4.

FT / FS

Fig. 9. Total (negative) momentum flux normal-
ized by the saturated momentum flux Fg
in cases of mountain height #=0.1,

0.5, 1.0, 1.5, 2.5 and 3.2 Am.
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for =100, 500, 1000, 1500, 2500, and 3200 .
When % is less than 500 m, ie, Fr is larger
than 1, Fr is almost constant with height. The
values agree well with those given by the linear
theory, although the flux is slightly larger than
the linear one because of weak nonlinear effects
(weak means non-breaking). For # larger than
1500 m, Fr at the surface is still increasing
with height, but at levels over 3 A&m it is almost
constant (about 1.2). At lower levels, the
momentum flux is oversaturated and decreasing
with height. It becomes almost saturated at the
level of about 2 km (roughly equal to = U/N).

9. Conclusion

We have found that the numerical model can
form Karman vortices in the lee of an isolated
mountain without either surface friction or an
elevated inversion. These findings agree with the
results of Smolarkiewicz and Rotunno (1989),
who explained this fact by a nonlinear and
isentropic process. In this study, however, it was
shown that the vortex formation is related to
breaking of the mountain waves, which is not an
isentropic process.

The vertical momentum flux by mountain
waves in the upper level is subject to the wave
saturation theory of Lindzen (1981). Namely, the
flux can not exceed a saturated value which
depends only on the ambient wind velocity and
stratification N. The numerical results agree with
this prediction in case of small Fr number.
However, the surface mountain drag is several
times larger than the saturated value. The
magnitude of the momentum flux decreases with
height and becomes almost constant, ie., attains
the saturated value at the level of about » U/N.
As a result, large flux divergence is produced in

the lower layer. The mean wind velocity is
decelerated in the lee of the mountain, and the
forms there. The
momentum exchange between the mountain

horizontal wind shear

waves and the mean wind is caused by turbulent
viscosity generated by the wave breaking. When
the horizontal shear is strong enough, the
Karman vortex will form by the barotropic
instability as mentioned by Yagi et al. (1987).
The onset of wave breaking is observed if Fr is
less than 0.8 (see Fig. 8) in the numerical
model, but it will depend on the shape of the
mountain. The Karman vortex forms when Fr is
less than about 0.22, although stationary Ilee
vortices forms when Fr is larger. By analogy
with the laboratory Karman vortex, in the
studies horizontal viscosity of the
atmosphere has been estimated by the frequency
and the interval between eddies (Atkinson, 1981).
However, the present results suggest that the

previous

formation mechanism in the atmosphere is
different from that in the laboratory, so that the
analogy mentioned above is doubtful.

The momentum budget calculated by hydro-
static model is almost the
nonhydrostatic result. Well developed Karman

same as the

vortex similar to the hydrostatic result was
simulated in the nonhydrostatic case. This means
that the hydrostatic assumption is adequate for
investigation of the origin of Karman vortex
from the viewpoint of wave breaking.
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