• Title/Summary/Keyword: Molecular imaging

Search Result 801, Processing Time 0.021 seconds

General Perspectives for Molecular Nuclear Imaging (분자핵의학영상 개관)

  • Chung, June-Key
    • The Korean Journal of Nuclear Medicine
    • /
    • v.38 no.2
    • /
    • pp.111-114
    • /
    • 2004
  • Molecular imaging provides a visualization of normal as well as abnormal cellular processes at a molecular or genetic level rather than at a anatomical level. Conventional medical imaging methods utilize the imaging signals produced by nonspecific physico-chemical interaction. However, molecular imaging methods utilize the imaging signals derived from specific cellular or molecular events. Because molecular and genetic changes precede anatomical change in the course of disease development, molecular imaging can detect early events in disease progression. in the near future, through molecular imaging we can understand basic mechanisms of disease, and diagnose earlier and, subsequently, treat earlier intractable diseases such as cancer, neuro-degenerative diseases, and immunologic disorders. In beginning period, nuclear medicine started as a molecular imaging, and has had a leading role in the field of molecular imaging. But recently molecular imaging has been rapidly developed. Besides nuclear imaging, molecular imaging methods such as optical imaging, magnetic resonance imaging are emerging. Each imaging modalities have their advantages and weaknesses. The opportunities from molecular imaging look bright. We should try nuclear medicine continues to have a leading role in molecular imaging.

Molecular Imaging in the Age of Genomic Medicine

  • Byun, Jong-Hoe
    • Genomics & Informatics
    • /
    • v.5 no.2
    • /
    • pp.46-55
    • /
    • 2007
  • The convergence of molecular and genetic disciplines with non-invasive imaging technologies has provided an opportunity for earlier detection of disease processes which begin with molecular and cellular abnormalities. This emerging field, known as molecular imaging, is a relatively new discipline that has been rapidly developed over the past decade. It endeavors to construct a visual representation, characterization, and quantification of biological processes at the molecular and cellular level within living organisms. One of the goals of molecular imaging is to translate our expanding knowledge of molecular biology and genomic sciences into good patient care. The practice of molecular imaging is still largely experimental, and only limited clinical success has been achieved. However, it is anticipated that molecular imaging will move increasingly out of the research laboratory and into the clinic over the next decade. Non-invasive in vivo molecular imaging makes use of nuclear, magnetic resonance, and in vivo optical imaging systems. Recently, an interest in Positron Emission Tomography (PET) has been revived, and along with optical imaging systems PET is assuming new, important roles in molecular genetic imaging studies. Current PET molecular imaging strategies mostly rely on the detection of probe accumulation directly related to the physiology or the level of reporter gene expression. PET imaging of both endogenous and exogenous gene expression can be achieved in animals using reporter constructs and radio-labeled probes. As increasing numbers of genetic markers become available for imaging targets, it is anticipated that a better understanding of genomics will contribute to the advancement of the molecular genetic imaging field. In this report, the principles of non-invasive molecular genetic imaging, its applications and future directions are discussed.

Molecular imaging application of iron oxide nanoradiomaterial

  • Ran Ji Yoo;Ji Yong Park;Tae Hyeon Choi;Jin Sil Kim;Yun-Sang Lee
    • Journal of Radiopharmaceuticals and Molecular Probes
    • /
    • v.7 no.2
    • /
    • pp.133-140
    • /
    • 2021
  • Various iron oxide nanoparticle-based radiomaterials(IO-NRM) can be used for multimodal imaging of magnetic resonance imaging and molecular imaging, can be easily sized, can be easily functionalized, and have biocompatibility, making them a very good platform for molecular imaging. Based on the previously revealed molecular imaging technology of iron oxide nanoparticles, this paper introduces the in vivo distribution and use in various diseases through iron oxide nanoparticles-based radiolabeled compounds for diagnosis and treatment of iron oxide nanoparticles-based molecular imaging platforms. We would like to look forward to its potential as a radiopharmaceutical.

Feature values of DWT using MR general imaging and molecular imaging (DWT를 이용한 MR 일반영상과 분자영상 특징추출)

  • Pack, Dae-Sung;Choi, Gui-Rack;Han, Byung-Sung;Ahn, Byung-Ju
    • Journal of the Korean Society of Radiology
    • /
    • v.6 no.5
    • /
    • pp.409-414
    • /
    • 2012
  • This study acquired molecular lmaging using nano-contrast agents, and the general condition of the same image acquisition to analyze the difference between molecular imaging and general imaging, two images are converted into DWT (Discrete Wavelet Transform). Nano-contrast agent imaging using MRI and molecular imaging using PET study of molecular imaging technology mainstream. DWT analysis of the same lesions using MRI imaging and molecular imaging block lesions are present in the lesions, illustrating the value of a high-frequency feature both highly general imaging and molecular imaging could know that. The high frequency region of the feature extraction values appear higher molecular imaging.

Cardiovascular Molecular Imaging (심장 분자영상)

  • Lee, Kyung-Han
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.43 no.3
    • /
    • pp.229-239
    • /
    • 2009
  • Molecular imaging strives to visualize processes in living subjects at the molecular level. Monitoring biochemical processes at this level will allow us to directly track biological processes and signaling events that lead to pathophysiological abnormalities, and help make personalized medicine a reality by allowing evaluation of therapeutic efficacies on an individual basis. Although most molecular imaging techniques emerged from the field of oncology, they have now gradually gained acceptance by the cardiovascular community. Hence, the availability of dedicated high-resolution small animal imaging systems and specific targeting imaging probes is now enhancing our understanding of cardiovascular diseases and expediting the development of newer therapies. Examples include imaging approaches to evaluate and track the progress of recent genetic and cellular therapies for treatment of myocardial ischemia. Other areas include in vivo monitoring of such key molecular processes as angiogenesis and apoptosis, Cardiovascular molecular imaging is already an important research tool in preclinical experiments. The challenge that lies ahead is to implement these techniques into the clinics so that they may help fulfill the promise of molecular therapies and personalized medicine, as well as to resolve disappointments and controversies surrounding the field.

In vivo molecular and single cell imaging

  • Hong, Seongje;Rhee, Siyeon;Jung, Kyung Oh
    • BMB Reports
    • /
    • v.55 no.6
    • /
    • pp.267-274
    • /
    • 2022
  • Molecular imaging is used to improve the disease diagnosis, prognosis, monitoring of treatment in living subjects. Numerous molecular targets have been developed for various cellular and molecular processes in genetic, metabolic, proteomic, and cellular biologic level. Molecular imaging modalities such as Optical Imaging, Magnetic Resonance Imaging (MRI), Positron Emission Tomography (PET), Single Photon Emission Computed Tomography (SPECT), and Computed Tomography (CT) can be used to visualize anatomic, genetic, biochemical, and physiologic changes in vivo. For in vivo cell imaging, certain cells such as cancer cells, immune cells, stem cells could be labeled by direct and indirect labeling methods to monitor cell migration, cell activity, and cell effects in cell-based therapy. In case of cancer, it could be used to investigate biological processes such as cancer metastasis and to analyze the drug treatment process. In addition, transplanted stem cells and immune cells in cell-based therapy could be visualized and tracked to confirm the fate, activity, and function of cells. In conventional molecular imaging, cells can be monitored in vivo in bulk non-invasively with optical imaging, MRI, PET, and SPECT imaging. However, single cell imaging in vivo has been a great challenge due to an extremely high sensitive detection of single cell. Recently, there has been great attention for in vivo single cell imaging due to the development of single cell study. In vivo single imaging could analyze the survival or death, movement direction, and characteristics of a single cell in live subjects. In this article, we reviewed basic principle of in vivo molecular imaging and introduced recent studies for in vivo single cell imaging based on the concept of in vivo molecular imaging.

Introduction To Basic Molecular Biologic Techniques for Molecular Imaging Researches (분자영상연구를 위한 분자생물학 기법 소개)

  • Kang, Joo-Hyun
    • The Korean Journal of Nuclear Medicine
    • /
    • v.38 no.2
    • /
    • pp.115-120
    • /
    • 2004
  • Molecular imaging is a rapidly growing field due to the advances in molecular biology and imaging technologies. With the introduction of imaging reporter genes into the cell, diverse cellular processes can be monitored, quantified and imaged non-invasively in vivo. These precesses include the gene expression, protein-protein interactions, signal transduction pathways, and monitoring of cells such as cancer cells, immune cells, and stem cells. In the near future, molecular imaging analysis will allow us to observe the incipience and progression of the disease. These will make us easier to give a diagnosis in the early stage of intractable diseases such as canter, neuro-degenerative disease, and immunological disorders. Additionally, molecular imaging method will be a valuable tool for the real-time evaluation of cells in molecular biology and the basic biological studies. As newer and more powerful molecular imaging tools become available, it will be necessary to corporate clinicians, molecular biologists and biochemists for the planning, interpretation, and application of these techniques to their fullest potential. in order for such a multidisciplinary team to be effective, it is essential that a common understanding of basic biochemical and molecular biologic techniques is achieved. Basic molecular techniques for molecular imaging methods are presented in this paper.

Application and Prospects of Molecular Imaging (분자영상의 적용분야 및 전망)

  • Choi, Guyrack;Lee, Sangbock
    • Journal of the Korean Society of Radiology
    • /
    • v.8 no.3
    • /
    • pp.123-136
    • /
    • 2014
  • In this paper, we study to classify molecular imaging and applications to predict future. Molecular imaging in vivo at the cellular level and the molecular level changes taking place to be imaged, that is molecular cell biology and imaging technology combined with the development of the new field. Molecular imaging is used fluorescence, bioluminescence, SPECT, PET, MRI, Ultrasound and other imaging technologies. That is applied to monitoring of gene therapy, cell tracking and monitoring of cell therapy, antibody imaging, drug development, molecular interaction picture, the near-infrared fluorescence imaging of cancer using fluorescence, bacteria using tumor-targeting imaging, therapeutic early assessment, prediction and therapy. The future of molecular imaging would be developed through fused interdisciplinary research and mutual cooperation, which molecular cell biology, genetics, chemistry, physics, computer science, biomedical engineering, nuclear medicine, radiology, clinical medicine, etc. The advent of molecular imaging will be possible to early diagnosis and personalized treatment of disease in the future.

In Vivo Reporter Gene Imaging: Recent Progress of PET and Optical Imaging Approaches

  • Min, Jung-Joon
    • Bioinformatics and Biosystems
    • /
    • v.1 no.1
    • /
    • pp.17-27
    • /
    • 2006
  • Recent progress in the development of non-invasive imaging technologies continues to strengthen the role of molecular imaging biological research. These tools have been validated recently in variety of research models, and have been shown to provide continuous quantitative monitoring of the location(s), magnitude, and time-variation of gene delivery and/or expression. This article reviews the use of radionuclide, magnetic resonance, and optical imaging technologies as they have been used in imaging gene delivery and gene expression for molecular imaging applications. The studies published to date demonstrate that noninvasive imaging tools will help to accelerate pre-clinical model validation as well as allow for clinical monitoring of human diseases.

  • PDF

Preparation of iron oxide nanoparticle combined with radioisotope for molecular imaging

  • Park, Ji Yong;Lee, Yun-Sang;Jeong, Jae Min
    • Journal of Radiopharmaceuticals and Molecular Probes
    • /
    • v.4 no.1
    • /
    • pp.36-42
    • /
    • 2018
  • Molecular imaging refers to detect the biochemical process in living organisms at the cellular and molecular levels and to quantify them. Due to several advantages of nanomaterials, various molecular images using nanomaterials are being tried. Attempts have been made to combine nanoparticles, known as micro- or nanosized nanomaterials, with radioactive isotopes for molecular imaging probe. The radiolabeled nanoparticles will expend the molecular imaging due to nanoparticle's size-dependent nature. In particular, iron oxide nanoparticles can be used for magnetic resonance imaging, can be adjusted in size, easily functionalized, and biocompatible, making it a very good platform for molecular imaging. In addition, iron oxide nanoparticles may be the best example for a new approach to molecular imaging techniques. In this paper, we introduce various methods for preparation of iron oxide nanoparticle combined with radioisotope starting from various synthesis methods of iron oxide nanoparticles to utilize iron oxide nanoparticles as a platform for molecular imaging through radioactive labeling.