• Title/Summary/Keyword: Molecular Communication

Search Result 232, Processing Time 0.027 seconds

Quantum Chemistry Based Arguments about Singlet Oxygen Formation Trends from Fluorescent Proteins

  • Park, Jae Woo;Rhee, Young Min
    • Rapid Communication in Photoscience
    • /
    • v.5 no.2
    • /
    • pp.18-20
    • /
    • 2016
  • Through quantum chemical means, we inspect the energetics of the singlet oxygen formation with fluorescent proteins in their triplet excited states. By placing an oxygen molecule at varying distances, we discover that the energetic driving force for the singlet oxygen formation does not depend strongly on the chromophore $-O_2$ distance. We also observe that the chromophore vibrations contribute much to the energy gap modulation toward the surface crossing. Based on our computational results, we try to draw a series of rationalizations of different photostabilities of different fluorescent proteins. Most prominently, we argue that the chance of encountering a surface crossing point is higher with a protein with a lower photostability.

Evolutionary Signature of Information Transfer Complexity in Cellular Membrane Proteomes

  • Kim, Jong-Min;Kim, Byung-Gee;Oh, S.-June
    • Genomics & Informatics
    • /
    • v.7 no.2
    • /
    • pp.111-121
    • /
    • 2009
  • Cell membrane proteins play crucial roles in the cell's molecular interaction with its environment and within itself. They consist of membrane-bound proteins and many types of transmembrane (TM) proteins such as receptors, transporters, channel proteins, and enzymes. Membrane proteomes of cellular organisms reveal some characteristics in their global topological distribution according to their evolutionary positions, and show their own information transfer complexity. Predicted transmembrane segments (TMSs) in membrane proteomes with HMMTOP showed near power-law distribution and frequency characteristics in 6-TMS and 7-TMS proteins in prokaryotes and eukaryotes, respectively. This reaffirms the important roles of membrane receptors in cellular communication and biological evolutionary history.

The Physical Interaction between Nucleotide-Binding Oligomerization Domain Containing 2 and Leucine-Rich Repeat Kinase 2

  • Jung, Ji-A;Park, Sangwook
    • Biomedical Science Letters
    • /
    • v.26 no.1
    • /
    • pp.47-50
    • /
    • 2020
  • Recently, decades of robust researches on degenerative brain disorder have been highlighted on the interactive connection of gut and brain. In terms of inflammatory cytokine production, others have shown that Nucleotide-Binding Oligomerization Domain Containing 2 (NOD2) is involved with Leucine-Rich Repeat Kinase 2 (LRRK2). HEK293T cells were transiently co-transfected with Myc-tagged LRRK2 and Flag-tagged NOD2 and then followed by co-immunoprecipitation assay. In this study, we provide the novel finding of physical protein-protein interaction between NOD2 and LRRK2. G2019S variant has shown stronger interactions against NOD2 than those of wild type LRRK2. In an axis of NOD2-LRRK2 communication, it is believed to pave a new way in the understanding of the bidirectional molecular mechanism of brain disorder, including Parkinson's disease into gut inflammatory disease, including Crohn's disease.

Impact of SV40 T antigen on two multiple fission microalgae species Scenedesmus quadricauda and Chlorella vulgaris

  • Gomaa, Ahmed E.;Yang, Seung Hwan
    • International journal of advanced smart convergence
    • /
    • v.7 no.1
    • /
    • pp.48-63
    • /
    • 2018
  • The combination of Simian Virus40 (SV40)'s large T antigen with its replication origin is commonly used in molecular studies to enhance the expression of heterogeneous genes through multiplying the plasmid copy number. There are no reports related to the impact of the SV40 T antigen on plant, multiple fissional, cell-type. This study explores the response of two multiple-fission microalgal cells, Scenedesmus quadricauda and Chlorella vulgaris, to the expression of the T-antigen, with aim of applying SV40 T-antigen to increase the expression efficiency of foreign genes in the two species. Different levels of low-expression have been constructed to control the expression of SV40 T antigen using three heterogenous promoters (NOS, CaMV35S, and CMV). Chlorella cultures showed slowdown in the growth rate for samples harboring the T antigen under the control of CaMV35S and CMV promoters, unlike Scenedesmus cultures which showed no significant difference between samples and could have silenced the expression.

Laccase Activity and Azo Dye Decolorization Potential of Podoscypha elegans

  • Pramanik, Satadru;Chaudhuri, Sujata
    • Mycobiology
    • /
    • v.46 no.1
    • /
    • pp.79-83
    • /
    • 2018
  • Azo dyes containing effluents from different industries pose threats to the environment. Though there are physico-chemical methods to treat such effluents, bioremediation is considered to be the best eco-compatible technique. In this communication, we discuss the decolorization potentiality of five azo dyes by Podoscypha elegans (G. Mey.) Pat., a macro-fungus, found growing on the leaf-litter layer of Bethuadahari Wildlife Sanctuary in West Bengal, India. The fungus exhibited high laccase and very low manganese peroxidase activities under different culture conditions. Decolorization of five high-molecular weight azo dyes, viz., Orange G, Congo Red, Direct Blue 15, Rose Bengal and Direct Yellow 27 by the fungus was found to be positive in all cases. Maximum and minimum mean decolorization percentages were recorded in Rose Bengal (70.41%) and Direct Blue 15 (24.8%), respectively. This is the first record of lignolytic study and dye decolorization by P. elegans.

Roles of Fungal Volatiles from Perspective of Distinct Lifestyles in Filamentous Fungi

  • Farh, Mohamed El-Agamy;Jeon, Junhyun
    • The Plant Pathology Journal
    • /
    • v.36 no.3
    • /
    • pp.193-203
    • /
    • 2020
  • Volatile compounds (VOCs) are not only media for communication within a species but also effective tools for sender to manipulate behavior and physiology of receiver species. Although the influence of VOCs on the interactions among organisms is evident, types of VOCs and specific mechanisms through which VOCs work during such interactions are only beginning to become clear. Here, we review the fungal volatile compounds (FVOCs) and their impacts on different recipient organisms from perspective of distinct lifestyles of the filamentous fungi. Particularly, we discuss the possibility that different lifestyles are intimately associated with an ability to produce a repertoire of FVOCs in fungi. The FVOCs discussed here have been identified and analyzed as relevant signals under a range of experimental settings. However, mechanistic insight into how specific interactions are mediated by such FVOCs at the molecular levels, amidst complex community of microbes and plants, requires further testing. Experimental designs and advanced technologies that attempt to address this question will facilitate our understanding and applications of FVOCs to agriculture and ecosystem management.

Electrical Conduction Properties of OLED Device with Varying Temperature (온도 변화에 따른 OLED 소자의 전기전도 특성)

  • Lee, Ho-Shik;Kim, Gwi-Yeol;Park, Yong-Pil
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.12
    • /
    • pp.2361-2365
    • /
    • 2007
  • Temperature-dependent current-voltage characteristics of Organic Light-Emitting Diodes(OLEDs) were studied. The OLEDs were based on the molecular compounds, N,N'-diphenyl-N,N'-bis(3- methylrhenyi)-1,1'-diphenyl-4,4'-diamine (TPD) as a hole transport and tris(8-hydroxyquinoline) aluminum(Alq3) as an electron transport and emissive material. The current-voltage characteristics were measured in the temperature range of 10[K] and 300[K]. A conduction mechanism in OLEDs was interpreted in terms of tunneling and trap-filled limited current.

The soma-germline communication: implications for somatic and reproductive aging

  • Gaddy, Matthew A.;Kuang, Swana;Alfhili, Mohammad A.;Lee, Myon Hee
    • BMB Reports
    • /
    • v.54 no.5
    • /
    • pp.253-259
    • /
    • 2021
  • Aging is characterized by a functional decline in most physiological processes, including alterations in cellular metabolism and defense mechanisms. Increasing evidence suggests that caloric restriction extends longevity and retards age-related diseases at least in part by reducing metabolic rate and oxidative stress in a variety of species, including yeast, worms, flies, and mice. Moreover, recent studies in invertebrates - worms and flies, highlight the intricate interrelation between reproductive longevity and somatic aging (known as disposable soma theory of aging), which appears to be conserved in vertebrates. This review is specifically focused on how the reproductive system modulates somatic aging and vice versa in genetic model systems. Since many signaling pathways governing the aging process are evolutionarily conserved, similar mechanisms may be involved in controlling soma and reproductive aging in vertebrates.

Manufacturing Therapeutic Exosomes: from Bench to Industry

  • Ahn, So-Hee;Ryu, Seung-Wook;Choi, Hojun;You, Sangmin;Park, Jun;Choi, Chulhee
    • Molecules and Cells
    • /
    • v.45 no.5
    • /
    • pp.284-290
    • /
    • 2022
  • Exosome, a type of nanoparticles also known as small extracellular vesicles are gaining attention as novel therapeutics for various diseases because of their ability to deliver genetic or bioactive molecules to recipient cells. Although many pharmaceutical companies are gradually developing exosome therapeutics, numerous hurdles remain regarding manufacture of clinical-grade exosomes for therapeutic use. In this mini-review, we will discuss the manufacturing challenges of therapeutic exosomes, including cell line development, upstream cell culture, and downstream purification process. In addition, developing proper formulations for exosome storage and, establishing good manufacturing practice facility for producing therapeutic exosomes remains as challenges for developing clinical-grade exosomes. However, owing to the lack of consensus regarding the guidelines for manufacturing therapeutic exosomes, close communication between regulators and companies is required for the successful development of exosome therapeutics. This review shares the challenges and perspectives regarding the manufacture and quality control of clinical grade exosomes.

Extracellular Vesicles as an Endocrine Mechanism Connecting Distant Cells

  • Kita, Shunbun;Shimomura, Iichiro
    • Molecules and Cells
    • /
    • v.45 no.11
    • /
    • pp.771-780
    • /
    • 2022
  • The field of extracellular vesicles (EVs) has expanded tremendously over the last decade. The role of cell-to-cell communication in neighboring or distant cells has been increasingly ascribed to EVs generated by various cells. Initially, EVs were thought to a means of cellular debris or disposal system of unwanted cellular materials that provided an alternative to autolysis in lysosomes. Intercellular exchange of information has been considered to be achieved by well-known systems such as hormones, cytokines, and nervous networks. However, most research in this field has searched for and found evidence to support paracrine or endocrine roles of EV, which inevitably leads to a new concept that EVs are synthesized to achieve their paracrine or endocrine purposes. Here, we attempted to verify the endocrine role of EV production and their contents, such as RNAs and bioactive proteins, from the regulation of biogenesis, secretion, and action mechanisms while discussing the current technical limitations. It will also be important to discuss how blood EV concentrations are regulated as if EVs are humoral endocrine machinery.