DOI QR코드

DOI QR Code

Quantum Chemistry Based Arguments about Singlet Oxygen Formation Trends from Fluorescent Proteins

  • Park, Jae Woo (Department of Chemistry, Pohang University of Science and Technology (POSTECH)) ;
  • Rhee, Young Min (Department of Chemistry, Pohang University of Science and Technology (POSTECH))
  • Received : 2016.09.17
  • Accepted : 2016.10.04
  • Published : 2016.12.30

Abstract

Through quantum chemical means, we inspect the energetics of the singlet oxygen formation with fluorescent proteins in their triplet excited states. By placing an oxygen molecule at varying distances, we discover that the energetic driving force for the singlet oxygen formation does not depend strongly on the chromophore $-O_2$ distance. We also observe that the chromophore vibrations contribute much to the energy gap modulation toward the surface crossing. Based on our computational results, we try to draw a series of rationalizations of different photostabilities of different fluorescent proteins. Most prominently, we argue that the chance of encountering a surface crossing point is higher with a protein with a lower photostability.

Keywords

References

  1. van Thor, J. J. Chem. Soc. Rev. 2009, 38, 2935. https://doi.org/10.1039/b820275n
  2. Tsien, R. Y. Annu. Rev. Biochem. 1998, 67, 509. https://doi.org/10.1146/annurev.biochem.67.1.509
  3. Meech, S. R. Chem. Soc. Rev. 2009, 38, 2922. https://doi.org/10.1039/b820168b
  4. Diaspro, A.; Chirico, G.; Usai, C.; Ramoino, P.; Dobrucki, J., Photobleaching. In Handbook of Biological Confocal Microscopy, Springer: 2006.
  5. Greenbaum, L.; Rothmann, C.; Lavie, R.; Malik, Z. Biol. Chem. 2000, 381, 1251.
  6. Shaner, N. C.; Patterson, G. H.; Davidson, M. W. J. Cell Sci. 2007, 120, 4247. https://doi.org/10.1242/jcs.005801
  7. Shaner, N. C.; Steinbach, P. A.; Tsien, R. Y. Nat. Meth. 2005, 2, 905. https://doi.org/10.1038/nmeth819
  8. Day, R. N.; Davidson, M. W. Chem. Soc. Rev. 2009, 38, 2887. https://doi.org/10.1039/b901966a
  9. Chapagain, P. P.; Regmi, C. K.; Castillo, W. J. Chem. Phys. 2011, 135, 235101. https://doi.org/10.1063/1.3660197
  10. Mena, M. A.; Treynor, T. P.; Mayo, S. L.; Daugherty, P. S. Nat. Biotechnol. 2006, 24, 1569. https://doi.org/10.1038/nbt1264
  11. Ai, H.-W.; Shaner, N. C.; Cheng, Z.; Tsien, R. Y.; Campbell, R. E. Biochemistry 2007, 46, 5904. https://doi.org/10.1021/bi700199g
  12. Ai, H.-W.; Henderson, J. N.; Remington, S. J.; Campbell, R. E. Biochem. J. 2006, 400, 531. https://doi.org/10.1042/BJ20060874
  13. Remington, S. J. Curr. Opin. Struct. Biol. 2006, 16, 714. https://doi.org/10.1016/j.sbi.2006.10.001
  14. Pakhomov, A. A.; Martynov, V. I. Chem. Biol. 2008, 15, 755. https://doi.org/10.1016/j.chembiol.2008.07.009
  15. Zhao, Y.; Truhlar, D. G. Theor. Chem. Acc. 2008, 120, 215. https://doi.org/10.1007/s00214-007-0310-x
  16. Stalring, J.; Bernhardsson, A.; Lindh, R. Mol. Phys. 2001, 99, 103. https://doi.org/10.1080/002689700110005642
  17. Andersen, H. C. J. Comput. Phys. 1983, 52, 24. https://doi.org/10.1016/0021-9991(83)90014-1
  18. Finley, J.; Malmqvist, P.-A.; Roos, B. O.; Serrano-Andres, L. Chem. Phys. Lett. 1998, 288, 299. https://doi.org/10.1016/S0009-2614(98)00252-8
  19. Shao, Y.; et al. Phys. Chem. Chem. Phys. 2006, 8, 3172. https://doi.org/10.1039/B517914A
  20. MOLPRO, version 2009.1, a package of ab initio programs, Werner, H.-J.; et al. (http://www.molpro.net).
  21. Campbell, R. E.; Tour, O.; Palmer, A. E.; Steinbach, P. A.; Baird, G. S.; Zacharias, D. A.; Tsien, R. Y. Proc. Natl. Acad. Sci. U.S.A. 2002, 99, 7877. https://doi.org/10.1073/pnas.082243699
  22. Rhee, Y. M.; Park, J. W. Int. J. Quantum Chem. 2016, 116, 573. https://doi.org/10.1002/qua.25064