DOI QR코드

DOI QR Code

The Recent Current of Fluorescent Polypyridine Compounds Having Photofuctionality

  • Received : 2016.12.19
  • Accepted : 2016.12.27
  • Published : 2016.12.30

Abstract

Many kinds of fluorescent polypyridine compounds including bpy and dppz derivatives are described in understanding the recent current of fluorescent materials having photofuctionality. Those polypyridine compounds have the photofunctionality such as the fluorescence recognition and/or photo-switching. Furthermore, those compounds are applicated for the construction of long ranged photoinduced electron/energy transfer system. Various fluorescent ${\pi}-conjugation$ systems connected by amide or imine bond as well as the simple fluorescent bpy derivatives are introduced in this review paper.

Keywords

References

  1. Fluorescent and Luminescent Probes for Biological Activity, 2nd Edition, ed. W. T. Mason, Academic Press, San Diego, 1999.
  2. Introduction to the Issue on Organic Electroluminescence, ed. S. R. Forrest and P. E. Burrows, IEEE, New York, 1998.
  3. Fluorescence Spectroscopy: New Method and Application, ed. O. S. Wolfbeis, Springer-Verlag, Berlin, 1993.
  4. S. A. Soper, I. M. Warner and L. B. McGown, Anal. Chem., 1998, 70, 477R. https://doi.org/10.1021/a1980019y
  5. A. P. de Silva, H. Q. N. Gunaratne, T. Gunnlaugsson, A. J. M. Huxley, C. P. McCoy, J. T. Rademacher, and T. E. Rice, Chem. Rev., 1997, 97, 1515. https://doi.org/10.1021/cr960386p
  6. K. Araki, K. Tada, M. Abe and T. Mutai, J. Chem. Soc., Perkin Trans. 2, 1998, 1391.
  7. V. Balzani, A. Juris, M. Venturi, S. Campagna and S. Serroni, Chem. Rev., 1996, 96, 759. https://doi.org/10.1021/cr941154y
  8. T. Mutai, Y. Abe and K. Araki, J. Chem. Soc., Perkin Trans. 2, 1997, 1805.
  9. J. -E. S. Sohna, P. Jaumier and F. Fages, J. Chem. Res. Synop., 1999, 134.
  10. T. Chin, Z. Gao, I. Lelouche, Y.-G. K. Shin, A. Purandare, S. Knapp and S. S. Isied, J. Am. Chem. Soc., 1997, 119, 12849. https://doi.org/10.1021/ja971481y
  11. L. A. Summers, Adv. Heterocycl. Chem., 1984, 35, 281. https://doi.org/10.1016/S0065-2725(08)60151-8
  12. F. Blau, Ber. Dtsch. Chem. Ges., 1888, 21, 1077. https://doi.org/10.1002/cber.188802101201
  13. L. H. Vogt and J. G. Wirth, J. Am. Chem. Soc., 1971, 93, 5402. https://doi.org/10.1021/ja00750a015
  14. H. Langhals and S. Pust, Chem. Ber., 1985, 118, 4674. https://doi.org/10.1002/cber.19851181204
  15. J. Sepiol, H. Bulska and A. Grabowska, Chem. Phys. Lett., 1987, 140, 607. https://doi.org/10.1016/0009-2614(87)80496-7
  16. H. Bulska, Chem. Phys. Lett., 1983, 98, 398. https://doi.org/10.1016/0009-2614(83)80231-0
  17. K. Araki, T. Mutai, Y. Shigemitsu, M. Yamada, T. Nakajima, S. Kuroda and I. Shimao, J. Chem. Soc., Perkin Trans. 2, 1996, 613.
  18. G. Albano, V. Balzani, E. C. Constable, M. Maestri, D. R. Smith, Inorg. Chim. Acta, 1998, 277, 225. https://doi.org/10.1016/S0020-1693(97)06159-8
  19. B. N. Bandyopadhyay, A. Harriman, J. Chem. Soc. Faraday Trans. 1, 1977, 73, 663. https://doi.org/10.1039/f19777300663
  20. H. S. Joshi, R. Jamshidi and Y. Tor, Angew. Chem. Int. Ed., 1999, 38, 2722.
  21. B. Bosnich, Acc. Chem. Res., 1969, 2, 266. https://doi.org/10.1021/ar50021a002
  22. G. T. Morgan and F. H. Burstall, J. Chem. Soc., 1932, 20. https://doi.org/10.1039/jr9320000020
  23. G. T. Morgan and F. H. Burstall, J. Chem. Soc., 1937, 1649.
  24. E. C. Constable, Adv. Inorg. Chem. Radiochem., 1986, 30, 69. https://doi.org/10.1016/S0898-8838(08)60240-8
  25. F. Krohnke, Synthesis, 1976, 1.
  26. J. E. Dickeson and L. A. Summers, Aust. J. Chem., 1970, 23, 1023. https://doi.org/10.1071/CH9701023
  27. M. N. Ackermann and L. V. Interrante, Inorg. Chem., 1984, 23, 3904. https://doi.org/10.1021/ic00192a014
  28. E. B. van der Tol, H. J. van Ramesdonk, J. W. Verhoeven, F. J. Steemers, E. G. Kerver, W. Verboom and D. N. Reinhoudt, Chem. Eur. J., 1998, 4, 2315. https://doi.org/10.1002/(SICI)1521-3765(19981102)4:11<2315::AID-CHEM2315>3.0.CO;2-E
  29. E. Amouyal, A. Homsi, J.-C. Chambron and J.-P. Sauvage, J. Chem. Soc., Dalton Trans., 1990, 1841.
  30. W. Kaim, Angew. Chem. Int. Ed. Engl., 1983, 22, 171. https://doi.org/10.1002/anie.198301713
  31. A. Lange, P. Tavan, D. Schroder and H. Baumgartel, Ber. Bunsenges. Phys. Chem., 1981, 85, 78. https://doi.org/10.1002/bbpc.19810850116
  32. B. Ya, Dain, Teor. Eksp. Khim., 1972, 8, 49.
  33. M. Kral, Theor. Chim. Acta (Berl.), 1980, 55, 333. https://doi.org/10.1007/BF00549432
  34. J. Fees, W. Kaim, M. Moscherosch, W. Matheis, J. Klima, M. Krejcik and S. Zalis, Inorg. Chem., 1993, 32, 166. https://doi.org/10.1021/ic00054a009
  35. E. D. A. Stemp, M. R. Arkin and J. K. Barton, J. Am. Chem. Soc., 1995, 117, 2375. https://doi.org/10.1021/ja00113a037
  36. R. E. Holmlin and J. K. Barton, Inorg. Chem., 1995, 34, 7. https://doi.org/10.1021/ic00105a004
  37. Y. Jenkins, A. E. Friedman, N. J. Turro and J. K. Barton, Biochemistry, 1992, 31, 10809. https://doi.org/10.1021/bi00159a023
  38. J.-C. Chambron and J.-P. Sauvage, Chem. Phys. Lett., 1991, 182, 603. https://doi.org/10.1016/0009-2614(91)90132-S
  39. V. W.-W. Yam, V. W.-M. Lee, F. Ke and K.-W. M. Siu, Inorg. Chem., 1997, 36, 2124. https://doi.org/10.1021/ic961400j
  40. C.-S. Choi, T. Mutai, S. Arita and K. Araki, J. Chem. Soc., Perkin Trans. 2, 2000, 243.
  41. C.-S. Choi, L. Mishra, T. Mutai and K. Araki, Bull. Chem. Soc. Jpn., 2000, 73, 2051. https://doi.org/10.1246/bcsj.73.2051
  42. L. Mishra, C.-S. Choi and K. Araki, Chem. Lett., 1997, 447.
  43. C.-S. Choi, K.-S. Jeon, K.-H. Lee, M. Yoon, M. Kwak, S.W. Lee and I.T. Kim, Bull. Korean Chem. Soc., 2006, 27(10), 1601. https://doi.org/10.5012/bkcs.2006.27.10.1601
  44. C.-S. Choi, K.-S. Jeon and K.-H. Lee, Bull. Korean Chem. Soc., 2011, 32(10), 3773. https://doi.org/10.5012/bkcs.2011.32.10.3773