References
- Alvarez-Erviti, L., Seow, Y., Schapira, A.H., Gardiner, C., Sargent, I.L., Wood, M.J., and Cooper, J.M. (2011). Lysosomal dysfunction increases exosomemediated alpha-synuclein release and transmission. Neurobiol. Dis. 42, 360-367. https://doi.org/10.1016/j.nbd.2011.01.029
- Andreu, Z. and Yanez-Mo, M. (2014). Tetraspanins in extracellular vesicle formation and function. Front. Immunol. 5, 442.
- Baietti, M.F., Zhang, Z., Mortier, E., Melchior, A., Degeest, G., Geeraerts, A., Ivarsson, Y., Depoortere, F., Coomans, C., Vermeiren, E., et al. (2012). Syndecan-syntenin-ALIX regulates the biogenesis of exosomes. Nat. Cell Biol. 14, 677-685. https://doi.org/10.1038/ncb2502
- Balatskaya, M.N., Sharonov, G.V., Baglay, A.I., Rubtsov, Y.P., and Tkachuk, V.A. (2019). Different spatiotemporal organization of GPI-anchored T-cadherin in response to low-density lipoprotein and adiponectin. Biochim. Biophys. Acta Gen. Subj. 1863, 129414. https://doi.org/10.1016/j.bbagen.2019.129414
- Bari, R., Guo, Q., Xia, B., Zhang, Y.H., Giesert, E.E., Levy, S., Zheng, J.J., and Zhang, X.A. (2011). Tetraspanins regulate the protrusive activities of cell membrane. Biochem. Biophys. Res. Commun. 415, 619-626. https://doi.org/10.1016/j.bbrc.2011.10.121
- Cashikar, A.G. and Hanson, P.I. (2019). A cell-based assay for CD63-containing extracellular vesicles. PLoS One 14, e0220007. https://doi.org/10.1371/journal.pone.0220007
- Castano, C., Kalko, S., Novials, A., and Parrizas, M. (2018). Obesityassociated exosomal miRNAs modulate glucose and lipid metabolism in mice. Proc. Natl. Acad. Sci. U. S. A. 115, 12158-12163. https://doi.org/10.1073/pnas.1808855115
- Chairoungdua, A., Smith, D.L., Pochard, P., Hull, M., and Caplan, M.J. (2010). Exosome release of β-catenin: a novel mechanism that antagonizes Wnt signaling. J. Cell Biol. 190, 1079-1091. https://doi.org/10.1083/jcb.201002049
- Chen, G., Huang, A.C., Zhang, W., Zhang, G., Wu, M., Xu, W., Yu, Z., Yang, J., Wang, B., Sun, H., et al. (2018). Exosomal PD-L1 contributes to immunosuppression and is associated with anti-PD-1 response. Nature 560, 382-386. https://doi.org/10.1038/s41586-018-0392-8
- Choezom, D. and Gross, J.C. (2022). Neutral sphingomyelinase 2 controls exosome secretion by counteracting V-ATPase-mediated endosome acidification. J. Cell Sci. 135, jcs259324. https://doi.org/10.1242/jcs.259324
- Clayton, A., Court, J., Navabi, H., Adams, M., Mason, M.D., Hobot, J.A., Newman, G.R., and Jasani, B. (2001). Analysis of antigen presenting cell derived exosomes, based on immuno-magnetic isolation and flow cytometry. J. Immunol. Methods 247, 163-174. https://doi.org/10.1016/S0022-1759(00)00321-5
- Colombo, M., Moita, C., van Niel, G., Kowal, J., Vigneron, J., Benaroch, P., Manel, N., Moita, L.F., Thery, C., and Raposo, G. (2013). Analysis of ESCRT functions in exosome biogenesis, composition and secretion highlights the heterogeneity of extracellular vesicles. J. Cell Sci. 126, 5553-5565.
- Colombo, M., Raposo, G., and Thery, C. (2014). Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annu. Rev. Cell Dev. Biol. 30, 255-289. https://doi.org/10.1146/annurev-cellbio-101512-122326
- Devis-Jauregui, L., Eritja, N., Davis, M.L., Matias-Guiu, X., and Llobet-Navas, D. (2021). Autophagy in the physiological endometrium and cancer. Autophagy 17, 1077-1095. https://doi.org/10.1080/15548627.2020.1752548
- Dinkins, M.B., Dasgupta, S., Wang, G., Zhu, G., and Bieberich, E. (2014). Exosome reduction in vivo is associated with lower amyloid plaque load in the 5XFAD mouse model of Alzheimer's disease. Neurobiol. Aging 35, 1792-1800. https://doi.org/10.1016/j.neurobiolaging.2014.02.012
- Dinkins, M.B., Enasko, J., Hernandez, C., Wang, G., Kong, J., Helwa, I., Liu, Y., Terry, A.V., and Bieberich, E. (2016). Neutral sphingomyelinase-2 deficiency ameliorates Alzheimer's disease pathology and improves cognition in the 5XFAD mouse. J. Neurosci. 36, 8653-8667. https://doi.org/10.1523/JNEUROSCI.1429-16.2016
- Eitan, E., Green, J., Bodogai, M., Mode, N.A., Baek, R., Jorgensen, M.M., Freeman, D.W., Witwer, K.W., Zonderman, A.B., Biragyn, A., et al. (2017). Age-related changes in plasma extracellular vesicle characteristics and internalization by leukocytes. Sci. Rep. 7, 1342. https://doi.org/10.1038/s41598-017-01386-z
- Eitan, E., Suire, C., Zhang, S., and Mattson, M.P. (2016). Impact of lysosome status on extracellular vesicle content and release. Ageing Res. Rev. 32, 65-74. https://doi.org/10.1016/j.arr.2016.05.001
- El Andaloussi, S., Mager, I., Breakefield, X.O., and Wood, M.J. (2013). Extracellular vesicles: biology and emerging therapeutic opportunities. Nat. Rev. Drug Discov. 12, 347-357. https://doi.org/10.1038/nrd3978
- Fabbiano, F., Corsi, J., Gurrieri, E., Trevisan, C., Notarangelo, M., and D'Agostino, V.G. (2020). RNA packaging into extracellular vesicles: an orchestra of RNA-binding proteins? J. Extracell. Vesicles 10, e12043.
- Fader, C.M., Sanchez, D.G., Mestre, M.B., and Colombo, M.I. (2009). TIVAMP/VAMP7 and VAMP3/cellubrevin: two v-SNARE proteins involved in specific steps of the autophagy/multivesicular body pathways. Biochim. Biophys. Acta 1793, 1901-1916. https://doi.org/10.1016/j.bbamcr.2009.09.011
- Fang, Y., Wu, N., Gan, X., Yan, W., Morrell, J.C., and Gould, S.J. (2007). Higher-order oligomerization targets plasma membrane proteins and HIV gag to exosomes. PLoS Biol. 5, e158. https://doi.org/10.1371/journal.pbio.0050158
- Fedele, A.O. and Proud, C.G. (2020). Chloroquine and bafilomycin A mimic lysosomal storage disorders and impair mTORC1 signalling. Biosci. Rep. 40, BSR20200905. https://doi.org/10.1042/BSR20200905
- Freeman, D.W., Noren Hooten, N., Eitan, E., Green, J., Mode, N.A., Bodogai, M., Zhang, Y., Lehrmann, E., Zonderman, A.B., Biragyn, A., et al. (2018). Altered extracellular vesicle concentration, cargo, and function in diabetes. Diabetes 67, 2377-2388. https://doi.org/10.2337/db17-1308
- Fukuda, S., Kita, S., Obata, Y., Fujishima, Y., Nagao, H., Masuda, S., Tanaka, Y., Nishizawa, H., Funahashi, T., Takagi, J., et al. (2017). The unique prodomain of T-cadherin plays a key role in adiponectin binding with the essential extracellular cadherin repeats 1 and 2. J. Biol. Chem. 292, 7840-7849. https://doi.org/10.1074/jbc.M117.780734
- Garcia-Martin, R., Wang, G., Brandao, B.B., Zanotto, T.M., Shah, S., Kumar Patel, S., Schilling, B., and Kahn, C.R. (2022). MicroRNA sequence codes for small extracellular vesicle release and cellular retention. Nature 601, 446-451. https://doi.org/10.1038/s41586-021-04234-3
- Gezsi, A., Kovacs, A., Visnovitz, T., and Buzas, E.I. (2019). Systems biology approaches to investigating the roles of extracellular vesicles in human diseases. Exp. Mol. Med. 51, 1-11.
- Ghossoub, R., Chery, M., Audebert, S., Leblanc, R., Egea-Jimenez, A.L., Lembo, F., Mammar, S., Le Dez, F., Camoin, L., Borg, J.P., et al. (2020). Tetraspanin-6 negatively regulates exosome production. Proc. Natl. Acad. Sci. U. S. A. 117, 5913-5922. https://doi.org/10.1073/pnas.1922447117
- Ghossoub, R., Lembo, F., Rubio, A., Gaillard, C.B., Bouchet, J., Vitale, N., Slavik, J., Machala, M., and Zimmermann, P. (2014). SynteninALIX exosome biogenesis and budding into multivesicular bodies are controlled by ARF6 and PLD2. Nat. Commun. 5, 3477. https://doi.org/10.1038/ncomms4477
- Gurunathan, S., Kang, M.H., and Kim, J.H. (2021). A comprehensive review on factors influences biogenesis, functions, therapeutic and clinical implications of exosomes. Int. J. Nanomedicine 16, 1281-1312. https://doi.org/10.2147/IJN.S291956
- Henne, W.M., Buchkovich, N.J., and Emr, S.D. (2011). The ESCRT pathway. Dev. Cell 21, 77-91. https://doi.org/10.1016/j.devcel.2011.05.015
- Hessvik, N.P. and Llorente, A. (2018). Current knowledge on exosome biogenesis and release. Cell. Mol. Life Sci. 75, 193-208. https://doi.org/10.1007/s00018-017-2595-9
- Hikita, T., Miyata, M., Watanabe, R., and Oneyama, C. (2018). Sensitive and rapid quantification of exosomes by fusing luciferase to exosome marker proteins. Sci. Rep. 8, 14035. https://doi.org/10.1038/s41598-018-32535-7
- Hitomi, K., Okada, R., Loo, T.M., Miyata, K., Nakamura, A.J., and Takahashi, A. (2020). DNA damage regulates senescence-associated extracellular vesicle release via the ceramide pathway to prevent excessive inflammatory responses. Int. J. Mol. Sci. 21, 3720. https://doi.org/10.3390/ijms21103720
- Hosen, M.R., Li, Q., Liu, Y., Zietzer, A., Maus, K., Goody, P., Uchida, S., Latz, E., Werner, N., Nickenig, G., et al. (2021). CAD increases the long noncoding RNA PUNISHER in small extracellular vesicles and regulates endothelial cell function via vesicular shuttling. Mol. Ther. Nucleic Acids 25, 388-405. https://doi.org/10.1016/j.omtn.2021.05.023
- Hurley, J.H., Boura, E., Carlson, L.A., and Rozycki, B. (2010). Membrane budding. Cell 143, 875-887. https://doi.org/10.1016/j.cell.2010.11.030
- Imjeti, N.S., Menck, K., Egea-Jimenez, A.L., Lecointre, C., Lembo, F., Bouguenina, H., Badache, A., Ghossoub, R., David, G., Roche, S., et al. (2017). Syntenin mediates SRC function in exosomal cell-to-cell communication. Proc. Natl. Acad. Sci. U. S. A. 114, 12495-12500. https://doi.org/10.1073/pnas.1713433114
- Jadli, A.S., Ballasy, N., Edalat, P., and Patel, V.B. (2020). Inside (sight) of tiny communicator: exosome biogenesis, secretion, and uptake. Mol. Cell. Biochem. 467, 77-94. https://doi.org/10.1007/s11010-020-03703-z
- Jeon, H.Y., Das, S.K., Dasgupta, S., Emdad, L., Sarkar, D., Kim, S.H., Lee, S.G., and Fisher, P.B. (2013). Expression patterns of MDA-9/syntenin during development of the mouse embryo. J. Mol. Histol. 44, 159-166. https://doi.org/10.1007/s10735-012-9468-1
- Jeppesen, D.K., Fenix, A.M., Franklin, J.L., Higginbotham, J.N., Zhang, Q., Zimmerman, L.J., Liebler, D.C., Ping, J., Liu, Q., Evans, R., et al. (2019). Reassessment of exosome composition. Cell 177, 428-445.e18. https://doi.org/10.1016/j.cell.2019.02.029
- Johmura, Y., Yamanaka, T., Omori, S., Wang, T.W., Sugiura, Y., Matsumoto, M., Suzuki, N., Kumamoto, S., Yamaguchi, K., Hatakeyama, S., et al. (2021). Senolysis by glutaminolysis inhibition ameliorates various age-associated disorders. Science 371, 265-270. https://doi.org/10.1126/science.abb5916
- Kadota, T., Fujita, Y., Yoshioka, Y., Araya, J., Kuwano, K., and Ochiya, T. (2018). Emerging role of extracellular vesicles as a senescence-associated secretory phenotype: insights into the pathophysiology of lung diseases. Mol. Aspects Med. 60, 92-103. https://doi.org/10.1016/j.mam.2017.11.005
- Kajimoto, T., Okada, T., Miya, S., Zhang, L., and Nakamura, S. (2013). Ongoing activation of sphingosine 1-phosphate receptors mediates maturation of exosomal multivesicular endosomes. Nat. Commun. 4, 2712. https://doi.org/10.1038/ncomms3712
- Kalluri, R. and LeBleu, V.S. (2020). The biology, function, and biomedical applications of exosomes. Science 367, eaau6977. https://doi.org/10.1126/science.aau6977
- Kashyap, R., Balzano, M., Lechat, B., Lambaerts, K., Egea-Jimenez, A.L., Lembo, F., Fares, J., Meeussen, S., Kugler, S., Roebroek, A., et al. (2021). Syntenin-knock out reduces exosome turnover and viral transduction. Sci. Rep. 11, 4083. https://doi.org/10.1038/s41598-021-81697-4
- Kawada-Horitani, E., Kita, S., Okita, T., Nakamura, Y., Nishida, H., Honma, Y., Fukuda, S., Tsugawa-Shimizu, Y., Kozawa, J., Sakaue, T., et al. (2022). Human adipose-derived mesenchymal stem cells prevent type 1 diabetes induced by immune checkpoint blockade. Diabetologia 65, 1185-1197. https://doi.org/10.1007/s00125-022-05708-3
- Kita, S., Fukuda, S., Maeda, N., and Shimomura, I. (2019a). Native adiponectin in serum binds to mammalian cells expressing T-cadherin, but not AdipoRs or calreticulin. Elife 8, e48675. https://doi.org/10.7554/eLife.48675
- Kita, S., Maeda, N., and Shimomura, I. (2019b). Interorgan communication by exosomes, adipose tissue, and adiponectin in metabolic syndrome. J. Clin. Invest. 129, 4041-4049. https://doi.org/10.1172/JCI129193
- Kita, S. and Shimomura, I. (2021). Stimulation of exosome biogenesis by adiponectin, a circulating factor secreted from adipocytes. J. Biochem. 169, 173-179. https://doi.org/10.1093/jb/mvaa105
- Kojima, R., Bojar, D., Rizzi, G., Hamri, G.C.E., El-Baba, M.D., Saxena, P., Auslander, S., Tan, K.R., and Fussenegger, M. (2018). Designer exosomes produced by implanted cells intracerebrally deliver therapeutic cargo for Parkinson's disease treatment. Nat. Commun. 9, 1305. https://doi.org/10.1038/s41467-018-03733-8
- Luo, W., Dai, Y., Chen, Z., Yue, X., Andrade-Powell, K.C., and Chang, J. (2020). Spatial and temporal tracking of cardiac exosomes in mouse using a nano-luciferase-CD63 fusion protein. Commun. Biol. 3, 114. https://doi.org/10.1038/s42003-020-0830-7
- Mateescu, B., Kowal, E.J., van Balkom, B.W., Bartel, S., Bhattacharyya, S.N., Buzas, E.I., Buck, A.H., de Candia, P., Chow, F.W., Das, S., et al. (2017). Obstacles and opportunities in the functional analysis of extracellular vesicle RNA - an ISEV position paper. J. Extracell. Vesicles 6, 1286095. https://doi.org/10.1080/20013078.2017.1286095
- Mathieu, M., Martin-Jaular, L., Lavieu, G., and Thery, C. (2019). Specificities of secretion and uptake of exosomes and other extracellular vesicles for cell-to-cell communication. Nat. Cell Biol. 21, 9-17. https://doi.org/10.1038/s41556-018-0250-9
- Matsumoto, A., Takahashi, Y., Chang, H.Y., Wu, Y.W., Yamamoto, A., Ishihama, Y., and Takakura, Y. (2020). Blood concentrations of small extracellular vesicles are determined by a balance between abundant secretion and rapid clearance. J. Extracell. Vesicles 9, 1696517. https://doi.org/10.1080/20013078.2019.1696517
- Miao, Y., Li, G., Zhang, X., Xu, H., and Abraham, S.N. (2015). A TRP channel senses lysosome neutralization by pathogens to trigger their expulsion. Cell 161, 1306-1319. https://doi.org/10.1016/j.cell.2015.05.009
- Misawa, T., Tanaka, Y., Okada, R., and Takahashi, A. (2020). Biology of extracellular vesicles secreted from senescent cells as senescence-associated secretory phenotype factors. Geriatr. Gerontol. Int. 20, 539-546. https://doi.org/10.1111/ggi.13928
- Murillo, O.D., Thistlethwaite, W., Rozowsky, J., Subramanian, S.L., Lucero, R., Shah, N., Jackson, A.R., Srinivasan, S., Chung, A., Laurent, C.D., et al. (2019). exRNA Atlas analysis reveals distinct extracellular RNA cargo types and their carriers present across human biofluids. Cell 177, 463-477.e15. https://doi.org/10.1016/j.cell.2019.02.018
- Murrow, L., Malhotra, R., and Debnath, J. (2015). ATG12-ATG3 interacts with Alix to promote basal autophagic flux and late endosome function. Nat. Cell Biol. 17, 300-310. https://doi.org/10.1038/ncb3112
- Nakamura, Y., Kita, S., Tanaka, Y., Fukuda, S., Obata, Y., Okita, T., Nishida, H., Takahashi, Y., Kawachi, Y., Tsugawa-Shimizu, Y., et al. (2020). Adiponectin stimulates exosome release to enhance mesenchymal stem-cell-driven therapy of heart failure in mice. Mol. Ther. 28, 2203-2219. https://doi.org/10.1016/j.ymthe.2020.06.026
- O'Brien, K., Breyne, K., Ughetto, S., Laurent, L.C., and Breakefield, X.O. (2020). RNA delivery by extracellular vesicles in mammalian cells and its applications. Nat. Rev. Mol. Cell Biol. 21, 585-606. https://doi.org/10.1038/s41580-020-0251-y
- Obata, Y., Kita, S., Koyama, Y., Fukuda, S., Takeda, H., Takahashi, M., Fujishima, Y., Nagao, H., Masuda, S., Tanaka, Y., et al. (2018). Adiponectin/ T-cadherin system enhances exosome biogenesis and decreases cellular ceramides by exosomal release. JCI Insight 3, e99680. https://doi.org/10.1172/jci.insight.99680
- Ostrowski, M., Carmo, N.B., Krumeich, S., Fanget, I., Raposo, G., Savina, A., Moita, C.F., Schauer, K., Hume, A.N., Freitas, R.P., et al. (2010). Rab27a and Rab27b control different steps of the exosome secretion pathway. Nat. Cell Biol. 12, 19-30; sup pp 1-13.
- Phuyal, S., Hessvik, N.P., Skotland, T., Sandvig, K., and Llorente, A. (2014). Regulation of exosome release by glycosphingolipids and flotillins. FEBS J. 281, 2214-2227. https://doi.org/10.1111/febs.12775
- Poupardin, R., Wolf, M., and Strunk, D. (2021). Adherence to minimal experimental requirements for defining extracellular vesicles and their functions. Adv. Drug Deliv. Rev. 176, 113872. https://doi.org/10.1016/j.addr.2021.113872
- Rider, M.A., Hurwitz, S.N., and Meckes, D.G. (2016). ExtraPEG: a polyethylene glycol-based method for enrichment of extracellular vesicles. Sci. Rep. 6, 23978. https://doi.org/10.1038/srep23978
- Roucourt, B., Meeussen, S., Bao, J., Zimmermann, P., and David, G. (2015). Heparanase activates the syndecan-syntenin-ALIX exosome pathway. Cell Res. 25, 412-428. https://doi.org/10.1038/cr.2015.29
- Salminen, A., Kaarniranta, K., and Kauppinen, A. (2020). Exosomal vesicles enhance immunosuppression in chronic inflammation: impact in cellular senescence and the aging process. Cell. Signal. 75, 109771. https://doi.org/10.1016/j.cellsig.2020.109771
- Savina, A., Furlan, M., Vidal, M., and Colombo, M.I. (2003). Exosome release is regulated by a calcium-dependent mechanism in K562 cells. J. Biol. Chem. 278, 20083-20090. https://doi.org/10.1074/jbc.M301642200
- Sheldon, H., Heikamp, E., Turley, H., Dragovic, R., Thomas, P., Oon, C.E., Leek, R., Edelmann, M., Kessler, B., Sainson, R.C., et al. (2010). New mechanism for Notch signaling to endothelium at a distance by Delta-like 4 incorporation into exosomes. Blood 116, 2385-2394.
- Sidhom, K., Obi, P.O., and Saleem, A. (2020). A review of exosomal isolation methods: is size exclusion chromatography the best option? Int. J. Mol. Sci. 21, 6466. https://doi.org/10.3390/ijms21186466
- Skotland, T., Sandvig, K., and Llorente, A. (2017). Lipids in exosomes: current knowledge and the way forward. Prog. Lipid Res. 66, 30-41. https://doi.org/10.1016/j.plipres.2017.03.001
- Stuffers, S., Sem Wegner, C., Stenmark, H., and Brech, A. (2009). Multivesicular endosome biogenesis in the absence of ESCRTs. Traffic 10, 925-937. https://doi.org/10.1111/j.1600-0854.2009.00920.x
- Suda, M., Shimizu, I., Katsuumi, G., Hsiao, C.L., Yoshida, Y., Matsumoto, N., Yoshida, Y., Katayama, A., Wada, J., Seki, M., et al. (2022). Glycoprotein nonmetastatic melanoma protein B regulates lysosomal integrity and lifespan of senescent cells. Sci. Rep. 12, 6522. https://doi.org/10.1038/s41598-022-10522-3
- Suda, M., Shimizu, I., Katsuumi, G., Yoshida, Y., Hayashi, Y., Ikegami, R., Matsumoto, N., Yoshida, Y., Mikawa, R., Katayama, A., et al. (2021). Senolytic vaccination improves normal and pathological age-related phenotypes and increases lifespan in progeroid mice. Nat. Aging 1, 1117-1126. https://doi.org/10.1038/s43587-021-00151-2
- Takahashi, A., Okada, R., Nagao, K., Kawamata, Y., Hanyu, A., Yoshimoto, S., Takasugi, M., Watanabe, S., Kanemaki, M.T., Obuse, C., et al. (2017). Exosomes maintain cellular homeostasis by excreting harmful DNA from cells. Nat. Commun. 8, 15287. https://doi.org/10.1038/ncomms15287
- Takasugi, M. (2018). Emerging roles of extracellular vesicles in cellular senescence and aging. Aging Cell 17, e12734. https://doi.org/10.1111/acel.12734
- Takasugi, M., Okada, R., Takahashi, A., Virya Chen, D., Watanabe, S., and Hara, E. (2017). Small extracellular vesicles secreted from senescent cells promote cancer cell proliferation through EphA2. Nat. Commun. 8, 15729.
- Tanaka, Y., Kita, S., Nishizawa, H., Fukuda, S., Fujishima, Y., Obata, Y., Nagao, H., Masuda, S., Nakamura, Y., Shimizu, Y., et al. (2019). Adiponectin promotes muscle regeneration through binding to T-cadherin. Sci. Rep. 9, 16. https://doi.org/10.1038/s41598-018-37115-3
- Thery, C., Amigorena, S., Raposo, G., and Clayton, A. (2006). Isolation and characterization of exosomes from cell culture supernatants and biological fluids. Curr. Protoc. Cell Biol. Chapter 3, Unit 3.22.
- Thomou, T., Mori, M.A., Dreyfuss, J.M., Konishi, M., Sakaguchi, M., Wolfrum, C., Rao, T.N., Winnay, J.N., Garcia-Martin, R., Grinspoon, S.K., et al. (2017). Adipose-derived circulating miRNAs regulate gene expression in other tissues. Nature 542, 450-455. https://doi.org/10.1038/nature21365
- Thompson, C.A., Purushothaman, A., Ramani, V.C., Vlodavsky, I., and Sanderson, R.D. (2013). Heparanase regulates secretion, composition, and function of tumor cell-derived exosomes. J. Biol. Chem. 288, 10093-10099. https://doi.org/10.1074/jbc.C112.444562
- Tosar, J.P., Witwer, K., and Cayota, A. (2021). Revisiting extracellular RNA release, processing, and function. Trends Biochem. Sci. 46, 438-445. https://doi.org/10.1016/j.tibs.2020.12.008
- Trajkovic, K., Hsu, C., Chiantia, S., Rajendran, L., Wenzel, D., Wieland, F., Schwille, P., Brugger, B., and Simons, M. (2008). Ceramide triggers budding of exosome vesicles into multivesicular endosomes. Science 319, 1244-1247. https://doi.org/10.1126/science.1153124
- Tsugawa-Shimizu, Y., Fujishima, Y., Kita, S., Minami, S., Sakaue, T.A., Nakamura, Y., Okita, T., Kawachi, Y., Fukada, S., Namba-Hamano, T., et al. (2021). Increased vascular permeability and severe renal tubular damage after ischemia-reperfusion injury in mice lacking adiponectin or T-cadherin. Am. J. Physiol. Endocrinol. Metab. 320, E179-E190. https://doi.org/10.1152/ajpendo.00393.2020
- Urbanelli, L., Buratta, S., Sagini, K., Tancini, B., and Emiliani, C. (2016). Extracellular vesicles as new players in cellular senescence. Int. J. Mol. Sci. 17, 1408. https://doi.org/10.3390/ijms17091408
- Valadi, H., Ekstrom, K., Bossios, A., Sjostrand, M., Lee, J.J., and Lotvall, J.O. (2007). Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat. Cell Biol. 9, 654-659. https://doi.org/10.1038/ncb1596
- van Niel, G., Charrin, S., Simoes, S., Romao, M., Rochin, L., Saftig, P., Marks, M.S., Rubinstein, E., and Raposo, G. (2011). The tetraspanin CD63 regulates ESCRT-independent and -dependent endosomal sorting during melanogenesis. Dev. Cell 21, 708-721. https://doi.org/10.1016/j.devcel.2011.08.019
- van Niel, G., D'Angelo, G., and Raposo, G. (2018). Shedding light on the cell biology of extracellular vesicles. Nat. Rev. Mol. Cell Biol. 19, 213-228. https://doi.org/10.1038/nrm.2017.125
- Verderio, C., Gabrielli, M., and Giussani, P. (2018). Role of sphingolipids in the biogenesis and biological activity of extracellular vesicles. J. Lipid Res. 59, 1325-1340. https://doi.org/10.1194/jlr.R083915
- Wei, D., Zhan, W., Gao, Y., Huang, L., Gong, R., Wang, W., Zhang, R., Wu, Y., Gao, S., and Kang, T. (2021). RAB31 marks and controls an ESCRTindependent exosome pathway. Cell Res. 31, 157-177. https://doi.org/10.1038/s41422-020-00409-1
- Witwer, K.W., Buzas, E.I., Bemis, L.T., Bora, A., Lasser, C., Lotvall, J., Nolte-'t Hoen, E.N., Piper, M.G., Sivaraman, S., Skog, J., et al. (2013). Standardization of sample collection, isolation and analysis methods in extracellular vesicle research. J. Extracell. Vesicles 2, 10.3402/jev.v2i0.20360.
- Witwer, K.W. and Thery, C. (2019). Extracellular vesicles or exosomes? On primacy, precision, and popularity influencing a choice of nomenclature. J. Extracell. Vesicles 8, 1648167. https://doi.org/10.1080/20013078.2019.1648167
- Xie, S., Zhang, Q., and Jiang, L. (2022). Current knowledge on exosome biogenesis, cargo-sorting mechanism and therapeutic implications. Membranes (Basel) 12, 498. https://doi.org/10.3390/membranes12050498
- Yao, R.W., Wang, Y., and Chen, L.L. (2019). Cellular functions of long noncoding RNAs. Nat. Cell Biol. 21, 542-551. https://doi.org/10.1038/s41556-019-0311-8
- Zimmermann, P., Tomatis, D., Rosas, M., Grootjans, J., Leenaerts, I., Degeest, G., Reekmans, G., Coomans, C., and David, G. (2001). Characterization of syntenin, a syndecan-binding PDZ protein, as a component of cell adhesion sites and microfilaments. Mol. Biol. Cell 12, 339-350. https://doi.org/10.1091/mbc.12.2.339