• 제목/요약/키워드: Molding Factor

검색결과 123건 처리시간 0.03초

인공신경망을 이용한 사출성형품의 무게 안정성 제어에 대한 연구 (A Study on the Stability Control of Injection-molded Product Weight using Artificial Neural Network)

  • 이준한;김종선
    • 한국산업융합학회 논문집
    • /
    • 제23권5호
    • /
    • pp.773-787
    • /
    • 2020
  • In the injection molding process, the controlling stability of products quality is a very important factor in terms of productivity. Even when the optimum process conditions for the desired product quality are applied, uncontrollable external factors such as ambient temperature and humidity cause inevitable changes in the state of the melt resin, mold temperature. etc. Therefore, it is very difficult to maintain prodcut quality. In this study, a system that learns the correlation between process variables and product weight through artificial neural networks and predicts process conditions for the target weight was established. Then, when a disturbance occurs in the injection molding process and fluctuations in the weight of the product occur, the stability control of the product quality was performed by ANN predicting a new process condition for the change of weight. In order to artificially generate disturbance in the injection molding process, controllable factors were selected and changed among factors not learned in the ANN model. Initially, injection molding was performed with a polypropylene having a melt flow index of 10 g/10min, and then the resin was replaced with a polypropylene having a melt floiw index of 33 g/10min to apply disturbance. As a result, when the disturbance occurred, the deviation of the weight was -0.57 g, resulting in an error of -1.37%. Using the control method proposed in the study, through a total of 11 control processes, 41.57 g with an error of 0.00% in the range of 0.5% deviation of the target weight was measured, and the weight was stably maintained with 0.15±0.07% error afterwards.

Effects of Injection Molding Parameters and their Interactions on Mechanical Properties of PMMA/PC Blend

  • Hoang, Van Thanh;Luu, Duc Binh;Toan Do, Le Hung;Tran, Ngoc Hai;Nguyen, Pham The Nhan;Tran, Minh Sang;Tran, Minh Thong
    • 한국재료학회지
    • /
    • 제30권12호
    • /
    • pp.650-654
    • /
    • 2020
  • A combination of Polycarbonate (PC) material and Polymethylmethacrylate (PMMA), fabricated using an injection molding machine, has been investigated to determine its advantages, as studied in Ref. 1). This paper aims to investigate the optimization of PMMA/PC blend for both tensile yield strength and impact strength. Furthermore, interaction effects of process conditions on mechanical properties including tensile yield strength and impact strength of PMMA/PC blend by injection molding process are interpreted in this study. Tensile and impact specimens are designed following ASTM, type V, and are fabricated by injection molding process. The processing conditions such as melt temperature, mold temperature, packing pressure, and cooling time are applied; each factor has three levels. As a result, in comparison with optimization of separated responses, mechanical properties of PMMA/PC are found to decrease when optimizing both tensile and impact strengths simultaneously. The melt temperature is found to be the most significant interaction parameter with the mold temperature and packing pressure. In addition, there is more interaction between the mold temperature and cooling time. This investigation provides a useful understanding of the control of injection molding processing of polymer blends in optical application.

프레스성형공정에서 금형에 전달되는 진동 신호에 기반한 공정특성 분석에 대한 연구 (A Study on Process Characterization based on Vibration Signals Transmitted to the Mold in the Press Molding Process)

  • 이준한;김종선
    • Design & Manufacturing
    • /
    • 제17권1호
    • /
    • pp.56-63
    • /
    • 2023
  • In this study, the vibration signal of the mold was measured and analyzed to monitor the process information and characteristics during the press molding process. A necklace-type picture frame mold was used for press molding, and the vibration signal was measured by GY-61 acceleration sensor module attached to the surface of the upper (movable) mold base. The change of the vibration signal of the mold according to press speed was analyzed. As a result, the vibration signal had a large change at five sections: "Holder contact", "Punch contact and start of pressing", "End of pressing", "Mold open", and "Demolding". The time difference between "Punch contact and start of pressing" and "End of pressing" means the pressing time which is the actual time the material is molded under pressing pressure. The time intervals for each section, represented by the time interval between "Holder contact" and "Punch contact and start of pressing", can be used to compare and evaluate the press speed applied to the process. By comparing the vibration signals at 60 rpm and 90 rpm, the amplitude at the section of "Punch contact and start of pressing" increased as the press speed increased. This result means that as the press speed increases, more force and pressure is applied to the material. Also, the peak values of the other sections were found to increase as the press speed increased. It was found that the pressing time, the time interval between "Punch contact and start of pressing" and "End of pressing", decreases as the pressing speed increases. Similarly, press speed factor, the time interval between "Holder contact", and "Punch contact and start of pressing", is found to be shorter. Therefore, based on the result of this study, the pressing time, press speed, pressing(punching) pressure of each cycle can be monitored by measuring the vibration signal of the mold. Also, it was confirmed that the level and trend of process information and characterization can be evaluated as the change of the mold vibration during press molding.

  • PDF

위생기기 제조기업의 품질경영 성공요인에 관한 연구 (A study on the success factor of Quality Management in bath-tub & washbowl)

  • 황규일;이재하
    • 한국품질경영학회:학술대회논문집
    • /
    • 한국품질경영학회 2004년도 품질경영모델을 통한 가치 창출
    • /
    • pp.484-489
    • /
    • 2004
  • The purpose of this study is to examine the success factor of Quality Management (QM) in the manufacturing conditions aspect of medium and small-sized sanitary enterprise. The requisite for manufacturing factors are classified into manufacturing human factors (the number of production employee, training and teaching, discuss on quality, manufacture expertness, etc.), manufacturing facility factors (coating, hardening, and molding equipment), manufacturing core component factors (temperature and viscosity, line, surface). And the indicator of quality outcomes are measured by reorder and recommendation to others.

  • PDF

유전 센서 및 광섬유 센서를 이용한 EMC 유효 경화 수축 측정 (Measurement of effective cure shrinkage of EMC using dielectric sensor and FBG sensor)

  • 백정현;박동운;김학성
    • 마이크로전자및패키징학회지
    • /
    • 제29권4호
    • /
    • pp.83-87
    • /
    • 2022
  • 최근 반도체 패키지 두께가 점점 얇아짐에 따라 휨(warpage) 문제가 대두되고 있다. 휨(warpage)은 패키지 구성요소들 간의 물성 차이로 인해 발생하기 때문에, 휨(warpage)을 예측하기 위해서는 주된 구성요소인 EMC(Epoxy molding compound)의 정확한 물성 파악이 필수적으로 요구된다. 특히 EMC는 경화 공정 중 경화 수축을 보이는데, 겔점 이후에 발생하는 유효 경화 수축은 휨(warpage) 발생의 핵심 요소이다. 본 연구에서는 유전 센서를 이용해 측정한 소실 계수로부터 실제 반도체 패키지 경화 공정 동안 발생하는 EMC의 겔점이 정의되었다. 유전 센서로부터 얻은 결과를 분석하기 위해 DSC(Differential scanning calorimetry) 시험과 rheometer 시험이 수행되었다. 그 결과, 유전 측정법이 EMC 경화상태 모니터링에 효과적인 방법임이 검증되었다. 유전 측정과 동시에 광섬유 센서를 이용해 EMC의 경화 공정 중 변형률 변화 추이가 함께 측정되었다. 위 결과들로부터 경화 공정 중 발생하는 EMC의 유효 경화 수축이 측정되었다.

사출압력 최소화와 웰드라인 방지를 위한 자동차용 사출성형 부품의 최적설계 (Design Optimization of an Automotive Injection Molded Part for Minimizing Injection Pressure and Preventing Weldlines)

  • 박창현;표병기;최동훈;구만서
    • 한국자동차공학회논문집
    • /
    • 제19권1호
    • /
    • pp.66-72
    • /
    • 2011
  • Injection pressure is an important factor in filling procedure for injection molded parts. In addition, weldlines should be avoided to successfully produce injection molded parts. In this study, we optimally obtained injection molding process parameters that minimize injection pressure. Then, we determined the thickness of the part to avoid weldlines. To solve the optimization problem proposed, we employed MAPS-3D (Mold Analysis and Plastics Solution-3 Dimension), a commercial CAE tool for injection molding analysis, and PIAnO (Process Integration, Automation, and Optimization) as a commercial PIDO (Process Integration and Design Optimization) tool. We integrated MAPS-3D into PIAnO, automated the analysis and design procedure, and performed optimization by employing PQRSM (Progressive Quadratic Response Surface Method) equipped in PIAnO. We successfully obtained optimization results, which demonstrates the effectiveness of our design method.

금형 cavity 내의 압력 차이에 의한 발포사출품의 결정화도 차이 (The Difference of the Degree of Crystallinity of Foamed Plastics Depending on the Pressure Gradient in Mold Cavity)

  • 이동욱;차성운;현창훈
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.1354-1357
    • /
    • 2003
  • Mold Analysis is crucial factors in the design of injection molding process. Since the qualify of products depends on filing, shrinkage and etc, the procedure of prediction through analysis in the design of injection molding process is needed. In many cases, this kind of analysis makes it possible to predict pressure pattern which determines the condition of injection molding process. Crystallinity is the factor that determines the shrinkage of products. The studies showed the factors that had been related to the degree of crystallinity, which were mostly Weight Reduction, mold temperature and melt temperature. Therefore, the objective of this study is to see the differences of the degree of crystallinity depending on the positions of foamed plastics. The procedure of this study is as the following. First, Simulate the pressure gradient in mold cavity that can produces specimen by using Moldflow. Secondly, produce specimen and measure the degree or crystallinity of each part of specimen by using XRD. Lastly, identify the sensitivity of conventional plastic and foamed plastic on pressure gradient by comparing the simulation and the results of measurement.

  • PDF

패키징으로 인한 응력이 MEMS 소자에 미치는 영향 분석 및 개선 (Effects of Package Induced Stress on MEMS Device and Its Improvements)

  • 좌성훈;조용철;이문철
    • 한국정밀공학회지
    • /
    • 제22권11호
    • /
    • pp.165-172
    • /
    • 2005
  • In MEMS (Micro-Electro-Mechanical System), packaging induced stress or stress induced structure deformation becomes increasing concerns since it directly affects the performance of the device. In the decoupled vibratory MEMS gyroscope, the main factor that determines the yield rate is the frequency difference between the sensing and driving modes. The gyroscope, packaged using the anodic bonding at the wafer level and EMC (epoxy molding compound) molding, has a deformation of MEMS structure caused by thermal expansion mismatch. This effect results in large distribution in the frequency difference, and thereby a lower yield rate. To improve the yield rate we propose a packaged SiOG (Silicon On Glass) process technology. It uses a silicon wafer and two glass wafers to minimize the wafer warpage. Thus the warpage of the wafer is greatly reduced and the frequency difference is more uniformly distributed. In addition. in order to increase robustness of the structure against deformation caused by EMC molding, a 'crab-leg' type spring is replaced with a semi-folded spring. The results show that the frequency shift is greatly reduced after applying the semi-folded spring. Therefore we can achieve a more robust vibratory MEMS gyroscope with a higher yield rate.

WLP(Wafer Level Package)적용을 위한 SEMC(Sheet Epoxy Molding Compounds)용 Naphthalene Type Epoxy 수지의 경화특성연구 (Cure Characteristics of Naphthalene Type Epoxy Resins for SEMC (Sheet Epoxy Molding Compound) for WLP (Wafer Level Package) Application)

  • 김환건
    • 반도체디스플레이기술학회지
    • /
    • 제19권1호
    • /
    • pp.29-35
    • /
    • 2020
  • The cure characteristics of three kinds of naphthalene type epoxy resins(NET-OH, NET-MA, NET-Epoxy) with a 2-methyl imidazole(2MI) catalyst were investigated for preparing sheet epoxy molding compound(SEMC) for wafer level package(WLP) applications, comparing with diglycidyl ether of bisphenol-A(DGEBA) and 1,6-naphthalenediol diglycidyl ether(NE-16) epoxy resin. The cure kinetics of these systems were analyzed by differential scanning calorimetry with an isothermal approach, and the kinetic parameters of all systems were reported in generalized kinetic equations with diffusion effects. The NET-OH epoxy resin represented an n-th order cure mechanism as like NE-16 and DGEBA epoxy resins, however, the NET-MA and NET-Epoxy resins showed an autocatalytic cure mechanism. The NET-OH and NET-Epoxy resins showed higher cure conversion rates than DGEBA and NE-16 epoxy resins, however, the lowest cure conversion rates can be seen in the NET-MA epoxy resin. Although the NETEpoxy and NET-MA epoxy resins represented higher cure reaction conversions comparing with DGEBA and NE-16 resins, the NET-OH showed the lowest cure reaction conversions. It can be figured out by kinetic parameter analysis that the lowest cure conversion rates of the NET-MA epoxy resin are caused by lower collision frequency factor, and the lowest cure reaction conversions of the NET-OH are due to the earlier network structures formation according to lowest critical cure conversion.