• Title/Summary/Keyword: Molding Factor

Search Result 123, Processing Time 0.025 seconds

The design of blackout curtain for increasing electroplating uniformity of injection molding products (사출물 도금 균일도 증대를 위한 도금조 차폐막 설계)

  • Che, Woo-Seong;Lee, Jong-Keun;Jo, Hae-Yong;Woo, Chang-Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • v.9 no.2
    • /
    • pp.710-713
    • /
    • 2005
  • Recently, in the area of shipbuilding, automobile and electronics, the products which electroplating was applied to are developed and put into practice in the field. The extension of the field of applications electroplated objects is to complex shape and thus the rate of faults in electroplating is being increased in the process of manufacture. On the subject of the plating process in this study, the geometric factor, which influenced electroplating, was extracted by doing a comparative analysis of the findings in the plating bath and the results of performing computer simulation of 3D. Considering these factors, the study on the optimization of designing was conducted to make the plating quantity of plated objects uniform in terms of 3D.

  • PDF

A Study on the Behavior of Heavy Metal Ions and Hydration of Clinker Utilizing Municipal Solid Waste Incineration Ash (생활폐기물 소각재를 이용하여 합성한 클링커의 중금속 및 수화반응 거동에 관한 연구)

  • Ahn Ji Whan;Han Gi Chun;Han Ki Suk
    • Resources Recycling
    • /
    • v.13 no.4
    • /
    • pp.3-10
    • /
    • 2004
  • The intension of this study is to produce ordinary portland cement using ash, both bottom ash and fly ash, obtained from municipal solid waste incineration ash (MSWI). We used limestone, waste molding sand, shale, slag from converting furnaces and fly ash as main raw materials and mixed them, setting the lime saturation factor (LSF) within 91.0, the silica modulus (SM) within 2.40, and iron modulus (IM) within 1.80. We conducted tests adding bottom ash alone 1, 2 and 3% by weight, respectively, and a mixture of bottom ash 0.9% and fly ash 0.1 % by weight. The result of analysis on clinker shows that the more ash is added, the lower the burnability index (B.I.) falls, lowering the mineral evolution of calcium silicate accordingly. From the measurement of compressive strength we have learned that the more ash is used, the lower the strength becomes.

Development of high performance and efficiency plastic axial fan by proximity cooling mold to minimize warpage (휨 변경 최소화 근접 냉각 금형을 통한 고성능 고효율 플라스틱 축류팬 개발)

  • Shin, Kwang-Ho;Kim, Mi-ae;Chea, Bo-Hae;Park, Sang-Wook;Kim, Yong-Dae
    • Design & Manufacturing
    • /
    • v.13 no.1
    • /
    • pp.61-67
    • /
    • 2019
  • The cooling unit of the industrial showcase consists of a compressor, a condenser and an evaporator. An axial fan is used to circulate the air to improve the efficiency of the heat exchanger. In the past, aluminum fans have been used, which have problems such as low performance, efficiency, high failure rate, and high noise. This study is to develop high performance, high efficiency plastic fan replacing aluminum fan. A major factor in determining the performance and noise of an axial fan is the angle and cross-sectional shape of the blade, which is suitable for raising the lift force, thereby controlling the vortex, which is the main cause of noise and performance degradation. In order to produce a high efficiency injection molded fan, it is necessary to develop a mold that minimizes the deformation of the injection process for the designed shape. In this study, we developed a high efficiency, low noise plastic injection fan with more than 11% performance improvement and noise reduction compared to conventional aluminum fan.

Experimental Study on the Development of Void Precast Concrete Slab using Rubber Tube Mold for Inner Core (고무튜브 몰드 프리캐스트 콘크리트 유공 슬래브 개발에 관한 실험적 연구)

  • Bae, Kyu-Woong;Hong, Sung-Yub
    • Journal of the Korea Institute of Building Construction
    • /
    • v.21 no.4
    • /
    • pp.293-303
    • /
    • 2021
  • The void PC slab has a structurally reasonable cross-section by forming the hollow section of the neutral axis that is unnecessary for bending behavior. Domestic PC factories have introduced automation equipment to produce hollow PC slabs, and are achieving hollow sections through inserts. However, since the excessive initial investment cost of the PC factory is the main factor in the increase in production cost, other alternatives are needed. Therefore, in this study, when producing hollow PC slab members, by using a rubber tube as a formwork to form an internal hollow space, it is intended to contribute to securing productivity through molding various hollow shapes, making it larger, lightweight, and enabling rapid production. To implement a hollow PC slab using a rubber tube mold, the shape of a hollow cross-section in which the tube is combined was implemented by considering the shape of the rubber tube first. In addition, to secure the concrete quality of the hollow part, the finish properties of the rubber tube mold and concrete were evaluated, and the hollow PC production process was established.

Automotive Door Impact Beam Development using Thermoplastic Composite (열가소성 복합재 적용 자동차 도어 임팩트 빔 개발)

  • Kim, Won-Seock;Kim, Kyung-Chul;Jung, Woo-Cheol;Kim, Hwa-nam
    • Composites Research
    • /
    • v.33 no.6
    • /
    • pp.383-389
    • /
    • 2020
  • Thermoplastic composite is introduced to design an automotive door impact beam, and the manufacturing process is demonstrated. The safety regulation for vehicles has been steadily tightened, and weight-reduction has become a mandatory factor in the automotive industry. Hence, both high-performance and lightweight are demanded for automotive components. The aim of the present study is to develop an automotive door impact beam using fiber-reinforced thermoplastic composites to reduce the weight of the impact beam while increasing its mechanical performance. A new production method which combines continuous fiber-reinforced composite and LFT(Long Fiber-reinforced Thermoplastic) is implemented by using insert injection molding process. The mechanical performance of the composite impact beam was evaluated using 3-point bending tests. Thermoplastic composite will expand its application range to various automotive components due to its light-weight design capability and high productivity.

The influence of nano-silica on the wear and mechanical performance of vinyl-ester/glass fiber nanocomposites

  • Sokhandani, Navid;Setoodeh, AliReza;Zebarjad, Seyed Mojtaba;Nikbin, Kamran;Wheatley, Greg
    • Advances in nano research
    • /
    • v.13 no.1
    • /
    • pp.97-111
    • /
    • 2022
  • In the present article, silica nanoparticles (SNPs) were exploited to improve the tribological and mechanical properties of vinyl ester/glass fiber composites. To the best of our knowledge, there hasn't been any prior study on the wear properties of glass fiber reinforced vinyl ester SiO2 nanocomposites. The wear resistance is a critical concern in many industries which needs to be managed effectively to reduce high costs. To examine the influence of SNPs on the mechanical properties, seven different weight percentages of vinyl ester/nano-silica composites were initially fabricated. Afterward, based on the tensile testing results of the silica nanocomposites, four wt% of SNPs were selected to fabricate a ternary composite composed of vinyl ester/glass fiber/nano-silica using vacuum-assisted resin transfer molding. At the next stage, the tensile, three-point flexural, Charpy impact, and pin-on-disk wear tests were performed on the ternary composites. The fractured surfaces were analyzed by scanning electron microscopy (SEM) images after conducting previous tests. The most important and interesting result of this study was the development of a nanocomposite that exhibited a 52.2% decrease in the mean coefficient of friction (COF) by augmenting the SNPs, which is beneficial for the fabrication/repair of composite/steel energy pipelines as well as hydraulic and pneumatic pipe systems conveying abrasive materials. Moreover, the weight loss due to wearing the ternary composite containing one wt% of SNPs was significantly reduced by 70%. Such enhanced property of the fabricated nanocomposite may also be an important design factor for marine structures, bridges, and transportation of wind turbine blades.

Fabrication of Ceramic Filters via Binder Jetting Type 3D Printing Technology (바인더 젯팅 적층제조기술을 활용한 다공성 세라믹필터 제작)

  • Mose Kwon;Jong-Han Choi;Kwang-Taek Hwang;Jung-Hoon Choi;Kyu-Sung Han;Ung-Soo Kim;Jin-Ho Kim
    • Korean Journal of Materials Research
    • /
    • v.33 no.7
    • /
    • pp.285-294
    • /
    • 2023
  • Porous ceramics are used in various industrial applications based on their physical properties, including isolation, storage, and thermal barrier properties. However, traditional manufacturing environments require additional steps to control artificial pores and limit deformities, because they rely on limited molding methods. To overcome this drawback, many studies have recently focused on fabricating porous structures using additive manufacturing techniques. In particular, the binder jet technology enables high porosity and various types of designs, and avoids the limitations of existing manufacturing processes. In this study, we investigated process optimization for manufacturing porous ceramic filters using the binder jet technology. In binder jet technology, the flowability of the powder used as the base material is an important factor, as well as compatibility with the binder in the process and for the final print. Flow agents and secondary binders were used to optimize the flowability and compatibility of the powders. In addition, the effects of the amount of added glass frit, and changes in sintering temperature on the microstructure, porosity and mechanical properties of the final printed product were investigated.

Analysis of Warpage of Fan-out Wafer Level Package According to Molding Process Thickness (몰드 두께에 의한 팬 아웃 웨이퍼 레벨 패키지의 Warpage 분석)

  • Seung Jun Moon;Jae Kyung Kim;Euy Sik Jeon
    • Journal of the Semiconductor & Display Technology
    • /
    • v.22 no.4
    • /
    • pp.124-130
    • /
    • 2023
  • Recently, fan out wafer level packaging, which enables high integration, miniaturization, and low cost, is being rapidly applied in the semiconductor industry. In particular, FOWLP is attracting attention in the mobile and Internet of Things fields, and is recognized as a core technology that will lead to technological advancements such as 5G, self-driving cars, and artificial intelligence in the future. However, as chip density and package size within the package increase, FOWLP warpage is emerging as a major problem. These problems have a direct impact on the reliability and electrical performance of semiconductor products, and in particular, cause defects such as vacuum leakage in the manufacturing process or lack of focus in the photolithography process, so technical demands for solving them are increasing. In this paper, warpage simulation according to the thickness of FOWLP material was performed using finite element analysis. The thickness range was based on the history of similar packages, and as a factor causing warpage, the curing temperature of the materials undergoing the curing process was applied and the difference in deformation due to the difference in thermal expansion coefficient between materials was used. At this time, the stacking order was reflected to reproduce warpage behavior similar to reality. After performing finite element analysis, the influence of each variable on causing warpage was defined, and based on this, it was confirmed that warpage was controlled as intended through design modifications.

  • PDF

Management Guidelines on the Large Old Trees as the Natural Monuments in Seoul, Incheon, and Gyeonggi Province through the Analysis of the Growing Environment (생육환경 분석을 통한 서울·인천·경기지역 천연기념물 노거수의 관리방안)

  • Lee, Seung Je
    • Korean Journal of Heritage: History & Science
    • /
    • v.42 no.1
    • /
    • pp.88-99
    • /
    • 2009
  • This study was conducted to formulate management guidelines for Natural monumental old trees in Korea through survey of tree vigor and analysis of growing environments. A total of 20 old trees designated as natural monuments in Seoul, Incheon, and Gyeonggi Province were surveyed. The biological characteristics were surveyed with 4 items of species, ages and height of trees. The surrounding environments were surveyed with 2 items of location types and surroundings. The root conditions were surveyed with 2 items of denudation and molding depth. The health conditions were surveyed with 5 items of withering rate, cavity size, bark breakaway rate, damages by blight and insects, and growing tips. The soil conditions were surveyed with 6 items of PH, organic contents, valid phosphoric acid, transposal cations(K, Ca) and soil compaction. On the basis of outcomes of these research items, mutual relations among locations, growings and soil conditions of old trees were analyzed by carring out cross tabulation, correlation, and simple and multiple regression. Management guidelines were presented searching the factors effecting on the health of the monumental old trees. On the biological characteristics, the old trees designated as natural monuments were Pinus bungeana(4 trees), Juniperus chinensis(3 trees), Ginkgo biloba(3 trees), Poncirus trifoliata(2 trees). Actinidia arguta, Wisteria floribunda, Thuja orientalis, Quercus mongolica, Sophora japonica, Fraxinus rhynchophylla, Zelkova serrata, and Pinus densiflora. The tree height ranged from 4.2 to 39.2m, and root collar rounds ranged from 1.01 to 15.2m. On the surrounding environments, The location types ; Gardens(4), historical sites(5), residental sections(3) open agricultural fields(3), mountain hills(3), and near ocean beaches(1) and stream site(1). The surroundings ; 75% denudation of roots, molded more than 10cm except 4 trees(25%). On the health conditions, 1)Withering rate ; Ginkgo biloba(20%) in Yongmoon temple, (5%) in Saki-ri, kanwha-gun, and others had no withering rate. 2) Cavity size ; all subject had $5{\sim}100cm^3$ of cavity. 3) Bark breakaway rate ; Pinus bungeana in Soosong-dong, in the shrine of Confucius, in Samchung-dong, especially high rate of cavity(5~50%) in Seoul area and in Saki-ri, Kangwha-gun were high 45% brakeaway rate. 4) Damages by blight and insects was slight due to managements. 5Growing tips ; In cases of Juniperus chinensis in Changdeok palace and SunnogDang, seoul, growing tips were 1/2, presumably cause by air pollution, and in cases of Fraxinus rhynchophylla in Paju city and Pinus densiflora in BacksaDorip-ri, Icheon city, growing tips were fine, presumably because there were no moldings. On the Soil conditions, Soil pH ranged from 5.2 to 8.3, organic matter contents from 12% to 56%, phosphorus contents from 104 to 618ppm, soil compaction ranged from 7 to 28mm( among them, Denudation was severe with 21~28mm soil compactions in cases of Pinus bungeana in Soosong -dong, Thuja orientalis in Samchung -dong, Ginkgo biloba in the shrine of Confucius and in Yongmoon temple.) Results of cross tabulation, correlation, and regression analysis showed that molding depth was the most serious factor to deteriorate the tree vigor and cambium conductivity. In addition, soil acidity, organic matter contents, disease and insect damages and cambial detachment were also related to the tree vigor. Additional research of these relationships will be needed to conduct more detailed studies. Based on the relationships between the tree vigor and growing environments, it is considered that old trees should be managed to give them more growing spaces and less abuses. Also, molded soils should be removed and further soil-molding around the tree collar should be prohibited. For the construction of systematic management and removal of harmful factors, appropriative management according to spices, persistent monitering of damaged cases and construction of management system through the accumulation of data on the relationships of soil conditions are required.

Standardization Strategy of Smart Factory for Improving SME's Global Competitiveness (중소기업의 글로벌 경쟁력 제고를 위한 스마트공장 표준화 전략)

  • Chung, Sunyang;Jeon, Joong Yang;Hwang, Jeong-Jae
    • Journal of Korea Technology Innovation Society
    • /
    • v.19 no.3
    • /
    • pp.545-571
    • /
    • 2016
  • The development of ICT brings a big change in manufacturing industries, and new information technology such as IoT, AR, and big data was applied on manufacturing process. As a result, the concept of smart factory has been introduced as a new manufacturing paradigm. In fact advanced countries like USA, Germany, and Japan have actively introduced smart factory in their manufacturing industries such as electronic, automobile, machinery, to improve production efficiency and quality. The manufacturing environment has been changed into flexible system, so that smart factory will be leading future manufacturing industries. Thes changes have more severe influence on Korean manufacturing industries. Mny industrial companies, have a strong interest in smart factory and they, particularly big enterprises, have been adopting smart factory to increase their manufacturing efficiencies. However, Korean small and medium-sized enterprises (SMEs) have many financial and technological difficulties so that the diffusion of smart factory in Korean SMEs has not been satisfiable up to present. However, smart factory is very important for enhancing their competitiveness in global market. Therefore, this study aims at identifying the standardization strategy of smart factory in so-called Korean 'roots industry' by presuming that the standardization will activate the diffusion of smart factory among Korean SMEs. For this purpose, first, this study examines the competitiveness of SMEs, especially in 'roots industry' and identifies the necessity of diffusion of smart factory among those SMEs. Second, based on the active review on the existing literature, this study identifies four factor groups that would influence the adoption or diffusion of standardized smart factory. They are technological, organizational, industrial and policy factors. Third, using those four factors, this study made two comprehensive case analyses on the adoption and diffusion of smart factory. These two companies belong to molding sector which is one of the important six sectors in 'root industry'. Finally, based on the theoretical and empirical analyse, this study suggests four strategies for activating the standardization of smart factory; international standardization, government-leading standardization, firm-leading standardization, and non-standardization.