DOI QR코드

DOI QR Code

The influence of nano-silica on the wear and mechanical performance of vinyl-ester/glass fiber nanocomposites

  • Sokhandani, Navid (Department of Mechanical and Aerospace Engineering, Shiraz University of Technology) ;
  • Setoodeh, AliReza (Department of Mechanical and Aerospace Engineering, Shiraz University of Technology) ;
  • Zebarjad, Seyed Mojtaba (Department of Materials Science and Engineering, Engineering Faculty, Shiraz University) ;
  • Nikbin, Kamran (Department of Mechanical Engineering, Imperial College London) ;
  • Wheatley, Greg (College of Science and Engineering, James Cook University)
  • Received : 2022.01.27
  • Accepted : 2022.04.10
  • Published : 2022.07.25

Abstract

In the present article, silica nanoparticles (SNPs) were exploited to improve the tribological and mechanical properties of vinyl ester/glass fiber composites. To the best of our knowledge, there hasn't been any prior study on the wear properties of glass fiber reinforced vinyl ester SiO2 nanocomposites. The wear resistance is a critical concern in many industries which needs to be managed effectively to reduce high costs. To examine the influence of SNPs on the mechanical properties, seven different weight percentages of vinyl ester/nano-silica composites were initially fabricated. Afterward, based on the tensile testing results of the silica nanocomposites, four wt% of SNPs were selected to fabricate a ternary composite composed of vinyl ester/glass fiber/nano-silica using vacuum-assisted resin transfer molding. At the next stage, the tensile, three-point flexural, Charpy impact, and pin-on-disk wear tests were performed on the ternary composites. The fractured surfaces were analyzed by scanning electron microscopy (SEM) images after conducting previous tests. The most important and interesting result of this study was the development of a nanocomposite that exhibited a 52.2% decrease in the mean coefficient of friction (COF) by augmenting the SNPs, which is beneficial for the fabrication/repair of composite/steel energy pipelines as well as hydraulic and pneumatic pipe systems conveying abrasive materials. Moreover, the weight loss due to wearing the ternary composite containing one wt% of SNPs was significantly reduced by 70%. Such enhanced property of the fabricated nanocomposite may also be an important design factor for marine structures, bridges, and transportation of wind turbine blades.

Keywords

Acknowledgement

The authors would like to express their gratitude to Farassan Manufacturing and Industrial Company for providing composite materials for this research.

References

  1. Abenojar, J., Tutor, J., Ballesteros, Y., del Real, J.C. and Martinez, M.A. (2017), "Erosion- wear, mechanical and thermal properties of silica filled epoxy nanocomposites", Compos. B. Eng., 120, 42-53. https://doi.org/10.1016/j.compositesb.2017.03.047.
  2. Ahangaran, F., and Navarchian, A.H. (2020), "Recent advances in chemical surface modification of metal oxide nanoparticles with silane coupling agents: a review", Adv. Colloid Interf. Sci., 286, 102298. https://doi.org/10.1016/j.cis.2020.102298.
  3. Alsaadi, M., Bulut, M., Erklig, A. and Jabbar, A. (2018), "Nano-silica inclusion effects on mechanical and dynamic behavior of fiber reinforced carbon/Kevlar with epoxy resin hybrid composites", Compos. B. Eng., 152, 169-179. https://doi.org/10.1016/j.compositesb.2018.07.015.
  4. Antunes, P.V., Ramalho, A. and Carrilho, E.V.P. (2014), "Mechanical and wear behaviours of nano and microfilled polymeric composite: Effect of filler fraction and size", Mater. Des., 61, 50-60. https://doi.org/10.1016/j.matdes.2014.04.056.
  5. Asif, M., Ramezani, M., Khan, K.A., Khan, M.A. and Aw, K.C. (2019), "Experimental and numerical study of the effect of silica filler on the tensile strength of a 3D-printed particulate nanocomposite", Comptes Rendus Mecanique, 347(9), 615-625. https://doi.org/10.1016/j.crme.2019.07.003.
  6. Chen, C., Justice, R.S., Schaefer, D.W. and Baur, J.W. (2008), "Highly dispersed nanosilica- epoxy resins with enhanced mechanical properties", Polymer, 49(17), 3805-3815. https://doi.org/10.1016/j.polymer.2008.06.023.
  7. Constantinescu, D.M., Apostol, D.A., Picu, C.R., Krawczyk, K., Sieberer, M., Hadar, A. and Feuchter, M. (2018), "Fabrication of nanocomposites with silica nanoparticles", Mater. Today: Proc., 5(13), 26727-26732. https://doi.org/10.1016/j.matpr.2018.08.143.
  8. Das, S., Chattopadhyay, S., Dhanania, S., and Bhowmick, A.K. (2020), "Improved dispersion and physic-mechanical properties of rubber/silica composites through new silane grafting", Polym. Eng. Sci., 60(12), 3115-3134. https://doi.org/10.1002/pen.25541.
  9. Ebrahimi, F., Dabbagh, A., Rabczuk, T. and Tornabene, F. (2019a), "Analysis of propagation characteristics of elastic waves in heterogeneous nanobeams employing a new two-step porosity-dependent homogenization scheme", Adv. Nano Res., 7(2), 135-143. https://doi.org/10.12989/anr.2019.7.2.135.
  10. Ebrahimi, F., Nouraei, M., Dabbagh, A. and Rabczuk, T. (2019b), "Thermal buckling analysis of embedded graphene-oxide powder-reinforced nanocomposite plates", Adv. Nano Res., 7(5), 293-310. https://doi.org/10.12989/anr.2019.7.5.293.
  11. Fang, W., Yang, X., Li, Q., Li, M., and Xiao, G. (2020), "Improved mode I interlaminar fracture toughness of random polypropylene composite laminate via multiscale reinforcing formed by introducing functional nanofibrillated cellulose", Compos. B. Eng., 203, 108481. https://doi.org/10.1016/j.compositesb.2020.108481
  12. Fang, W., Yang, X., Xu, X., Li, W., and Li, Q. (2021), "Quasistatic and low-velocity impact responses of polypropylene random copolymer composites with adjustable crystalline structures", Compos. B. Eng., 224, 109139. https://doi.org/10.1016/j.compositesb.2021.109139
  13. Fattahi, A.M., Safaei, B., Qin, Z. and Chu, F. (2021), "Experimental studies on elastic properties of high density polyethylene-multi walled carbon nanotube nanocomposites", Steel Compos. Struct., 38(2), 177-187. https://doi.org/10.12989/scs.2021.38.2.177.
  14. Feli, S. and Jalilian, M.M. (2016), "Experimental and optimization of mechanical properties of epoxy/nanosilica and hybrid epoxy/fiberglass/nanosilica composites", J. Compos. Mater., 50(28), 3891-3903. https://doi.org/10.1177/0021998315627198.
  15. Ghahramani, P., Behdinan, K., Moradi-Dastjerdi, R., and Naguib, H.E. (2022), "Theoretical and experimental investigation of MWCNT dispersion effect on the elastic modulus of flexible PDMS/MWCNT nanocomposites", Nanotechnol. Rev., 11(1), 55-64. https://doi.org/10.1515/ntrev-2022-0006.
  16. He, P., Huang, M., Yu, B., Sprenger, S. and Yang, J. (2016), "Effects of nano-silica contents on the properties of epoxy nanocomposites and Ti-epoxy assembles", Compos. Sci. Technol., 129, 46-52. https://doi.org/10.1016/j.compscitech.2016.04.014.
  17. Hsieh, T.H., Kinloch, A.J., Masania, K., Taylor, A.C. and Sprenger, S. (2010), "The mechanisms and mechanics of the toughening of epoxy polymers modified with silica nanoparticles", Polymer, 51(26), 6284-6294. https://doi.org/10.1016/j.polymer.2010.10.048.
  18. Imani, A., Zhang, H., Owais, M., Zhao, J., Chu, P., Yang, J. and Zhang, Z. (2018), "Wear and friction of epoxy based nanocomposites with silica nanoparticles and wax-containing microcapsules", Compos. Part A Appl., 107, 607-615. https://doi.org/10.1016/j.compositesa.2018.01.033.
  19. Islam, M.S., Benninger, L.F., Pearce, G. and Wang, C.H. (2021), "Toughening carbon fibre composites at cryogenic temperatures using low-thermal expansion nanoparticles", Compos. Part A Appl., 150, 106613. https://doi.org/10.1016/j.compositesa.2021.106613.
  20. Karnati, S.R., Oldham, D., Fini, E.H., and Zhang, L. (2020), "Application of surface-modified silica nanoparticles with dual silane coupling agents in bitumen for performance enhancement", Constr. Build. Mater., 244, 118324. https://doi.org/10.1016/j.conbuildmat.2020.118324.
  21. Liu, H.Y., Wang, G.T., Mai, Y.W. and Zeng, Y. (2011), "On fracture toughness of nano-particle modified epoxy", Compos. B. Eng., 42(8), 2170-2175. https://doi.org/10.1016/j.compositesb.2011.05.014.
  22. Mahrholz, T., Stangle, J. and Sinapius, M. (2009), "Quantitation of the reinforcement effect of silica nanoparticles in epoxy resins used in liquid composite moulding processes", Compos. Part A Appl. Sci., 40(3), 235-243. https://doi.org/10.1016/j.compositesa.2008.11.008.
  23. Manjunatha, C.M., Taylor, A.C., Kinloch, A.J. and Sprenger, S. (2010), "The tensile fatigue behaviour of a silica nanoparticle-modified glass fibre reinforced epoxy composite", Compos. Sci. Technol., 70(1), 193-199. https://doi.org/10.1016/j.compscitech.2009.10.012.
  24. Megahed, M., Megahed, A.A., and Agwa, M.A. (2018), "Mechanical properties of on/off-axis loading for hybrid glass fiber reinforced epoxy filled with silica and carbon black nanoparticles", Mater. Technol., 33(6), 398-405. https://doi.org/10.1080/10667857.2018.1454022.
  25. Moradi-Dastjerdi, R., and Behdinan, K. (2021a), "Free vibration response of smart sandwich plates with porous CNT-reinforced and piezoelectric layers", Appl. Math. Model., 96, 66-79. https://doi.org/10.1016/j.apm.2021.03.013 .
  26. Moradi-Dastjerdi, R., and Behdinan, K. (2021b), "Dynamic performance of piezoelectric energy harvesters with a multifunctional nanocomposite substrate", Appl. Energy, 293, 116947. https://doi.org/10.1016/j.apenergy.2021.116947.
  27. Moradi-Dastjerdi, R., Malek-Mohammadi, H., and Momeni-Khabisi, H. (2017), "Free vibration analysis of nano-composite sandwich plates reinforced with CNT aggregates", ZAMM Z. Angew. Math. Me., 97(11), 1418-1435. https://doi.org/10.1002/zamm.201600209.
  28. Nookala, S., Tollamadugu, N.V.K.V.P., Thimmavajjula, G.K. and Ernest, D. (2015), "Effect of citrate coated silver nanoparticles on biofilm degradation in drinking water PVC pipelines", Adv. Nano Res., 3(2), 97-109. https://doi.org/10.12989/anr.2015.3.2.097.
  29. O sterle, W., Dmitriev, A.I., Wetzel, B., Zhang, G., Hausler, I. and Jim, B.C. (2016), "The role of carbon fibers and silica nanoparticles on friction and wear reduction of an advanced polymer matrix composite", Mater. Des., 93, 474-484. https://doi.org/10.1016/j.matdes.2015.12.175.
  30. Palraj, S., Selvaraj, M., Maruthan, K. and Rajagopal, G. (2015), "Corrosion and wear resistance behavior of nano-silica epoxy composite coatings", Prog. Org. Coat., 81, 132-139. https://doi.org/10.1016/j.porgcoat.2015.01.005.
  31. Rahmani, K., Wheatley, G., Sadooghi, A., Hashemi, S.J. and Babazadeh, J. (2021a), "The experimental analysis of creep and corrosion properties of polymeric tube reinforced by glass, carbon and Kevlar fibers", Mater. Res. Express, 8(6), 065307. https://doi.org/10.1088/2053-1591/ac0a00.
  32. Rahmani, K., Wheatley, G., Sadooghi, A., Hashemi, S.J. and Babazadeh, J. (2021b), "The experimental investigation of hardness and wear behaviors of inner surface of the resin tubes reinforced by fibers", Results Eng., 11, 100273. https://doi.org/10.1016/j.rineng.2021.100273.
  33. Rajaee, P., Ghasemi, F.A., Fasihi, M. and Saberian, M. (2019), "Effect of styrene-butadiene rubber and fumed silica nano-filler on the microstructure and mechanical properties of glass fiber reinforced unsaturated polyester resin", Compos. B. Eng., 173, 106803. https://doi.org/10.1016/j.compositesb.2019.05.014.
  34. Safaei, B., Khoda, F.H. and Fattahi, A.M. (2019), "Non-classical plate model for single-layered graphene sheet for axial buckling", Adv. Nano Res., 7(4), 265-275. https://doi.org/10.12989/anr.2019.7.4.265.
  35. Setoodeh, A.R. and Sokhandani, N. (2017), "Mechanical properties investigation of glass/fiber reinforced vinyl ester/clay nanocomposites fabricated by vacuum bag molding", J. Eng. Appl. Sci., 12(13), 3455-3460. https://doi.org/10.36478/jeasci.2017.3455.3460.
  36. Shaker, K., Nawab, Y. and Saouab, A. (2019), "Influence of silica fillers on failure modes of glass/vinyl ester composites under different mechanical loadings", Eng. Fract. Mech., 218, 106605. https://doi.org/10.1016/j.engfracmech.2019.106605.
  37. Singh, A.K., Gupta, P., and Singh, P.K. (2018), "Evaluation of Mechanical and Erosive wear Characteristics of TiO2 and ZnO filled bi-directional E-glass fiber-based vinyl ester composites", Silicon, 10(2), 309-327. https://doi.org/10.1007/s12633-016-9447-3.
  38. Sprenger, S. (2015), "Improving mechanical properties of fiber-reinforced composites based on epoxy resins containing industrial surface-modified silica nanoparticles: Review and outlook", J. Compos. Mater., 49(1), 53-63. https://doi.org/10.1177/0021998313514260.
  39. Su, C., Wang, X., Ding, L. and Wu, Z. (2020), "Enhancement of mechanical behavior of FRP composites modified by silica nanoparticles", Constr. Build. Mater., 262, 120769. https://doi.org/10.1016/j.conbuildmat.2020.120769.
  40. Su, F.H., and Zhang, Z.Z. (2010), "Friction and wear of Synfluo 180XF wax and nano-SiO2 filled hybrid glass/PTFE fabric composites with phenolic resin binder", Plast. Rubber Compos., 39(8), 350-356. https://doi.org/10.1179/174328910X12691245469998.
  41. Tang, L.C., Zhang, H., Sprenger, S., Ye, L. and Zhang, Z. (2012), "Fracture mechanisms of epoxy-based ternary composites filled with rigid-soft particles", Compos. Sci. Technol., 72(5), 558-565. https://doi.org/10.1016/j.compscitech.2011.12.015.
  42. Thooyavan, Y., Kumaraswamidhas, L.A., Raj, R.D.E., Binoj, J.S., and Brailson Mansingh, B. (2022), "Effect of combined micro and nano silicon carbide particles addition on mechanical, wear and moisture absorption features of basalt bidirectional mat/vinyl ester composites", Polym. Compos., 43(5), 2574-2583. https://doi.org/10.1002/pc.26557.
  43. Tian, Y., Zhang, H. and Zhang, Z. (2017), "Influence of nanoparticles on the interfacial properties of fiber-reinforced-epoxy composites", Compos. Part A Appl., 98, 1-8. https://doi.org/10.1016/j.compositesa.2017.03.007.
  44. Tsai, J.L., Hsiao, H. and Cheng, Y.L. (2010), "Investigating mechanical behaviors of silica nanoparticle reinforced composites", J. Compos. Mater., 44(4), 505-524. https://doi.org/10.1177/0021998309346138.
  45. Tuzemen, M. C ., Salamci, E., and Avci, A. (2017), "Enhancing mechanical properties of bolted carbon/epoxy nanocomposites with carbon nanotube, nanoclay, and hybrid loading", Compos. B. Eng., 128, 146-154. https://doi.org/10.1016/j.compositesb.2017.07.001.
  46. Uddin, M.F. and Sun, C.T. (2008), "Strength of unidirectional glass/epoxy composite with silica nanoparticle-enhanced matrix", Compos. Sci. Technol., 68(7-8), 1637-1643. https://doi.org/10.1016/j.compscitech.2008.02.026.
  47. Xiao, Y., Zou, H., Zhang, L., Ye, X., and Han, D. (2020), "Surface modification of silica nanoparticles by a polyoxyethylene sorbitan and silane coupling agent to prepare high-performance rubber composites", Polym. Test., 81, 106195. https://doi.org/10.1016/j.polymertesting.2019.106195.
  48. Yan, M., Jiao, W., Ding, G., Chu, Z., Huang, Y., and Wang, R. (2019), "High strength and toughness epoxy nanocomposites reinforced with graphene oxide-nanocellulose micro/nanoscale structures", Appl. Surf. Sci., 497, 143802. https://doi.org/10.1016/j.apsusc.2019.143802.
  49. Yang, X., Yu, Z., Fang, W., Wan, Z., Qian, Q., Li, W., and Li, Q. (2022), "Improving antistatic and mechanical properties of glass fiber reinforced polypropylene composites through polar adsorption and anchoring effect of organic salt", Compos. Sci. Technol., 109285. https://doi.org/10.1016/j.compscitech.2022.109285.
  50. Yu, K., Liang, Y., Ma, G., Yang, L., and Wang, T.J. (2019), "Coupling of synthesis and modification to produce hydrophobic or functionalized nano-silica particles", Colloids Surf. A., 574, 122-130. https://doi.org/10.1016/j.colsurfa.2019.04.077.
  51. Zhang, G., Lu, S., and Ke, Y. (2019), "Effects of silica nanoparticles on tribology performance of poly (Epoxy Resin-Bismaleimide)-based nanocomposites", Polym. Eng. Sci., 59(2), 274-283. https://doi.org/10.1002/pen.24901.
  52. Zhou, T., Cheng, X., Pan, Y., Li, C., Gong, L. and Zhang, H. (2017), "Mechanical performance and thermal stability of glass fiber reinforced silica aerogel composites based on co-precursor method by freeze drying", Appl. Surf. Sci., 437, 321-328. https://doi.org/10.1016/j.apsusc.2017.12.146.