DOI QR코드

DOI QR Code

Fabrication of Ceramic Filters via Binder Jetting Type 3D Printing Technology

바인더 젯팅 적층제조기술을 활용한 다공성 세라믹필터 제작

  • Mose Kwon (Ceramic Ware Materials, Icheon Branch, Korea Institute of Ceramic Engineering and Technology) ;
  • Jong-Han Choi (Ceramic Ware Materials, Icheon Branch, Korea Institute of Ceramic Engineering and Technology) ;
  • Kwang-Taek Hwang (Ceramic Ware Materials, Icheon Branch, Korea Institute of Ceramic Engineering and Technology) ;
  • Jung-Hoon Choi (Ceramic Ware Materials, Icheon Branch, Korea Institute of Ceramic Engineering and Technology) ;
  • Kyu-Sung Han (Ceramic Ware Materials, Icheon Branch, Korea Institute of Ceramic Engineering and Technology) ;
  • Ung-Soo Kim (Ceramic Ware Materials, Icheon Branch, Korea Institute of Ceramic Engineering and Technology) ;
  • Jin-Ho Kim (Ceramic Ware Materials, Icheon Branch, Korea Institute of Ceramic Engineering and Technology)
  • 권모세 (한국세라믹기술원 이천분원 도자융합소재기술센터) ;
  • 최종한 (한국세라믹기술원 이천분원 도자융합소재기술센터) ;
  • 황광택 (한국세라믹기술원 이천분원 도자융합소재기술센터) ;
  • 최정훈 (한국세라믹기술원 이천분원 도자융합소재기술센터) ;
  • 한규성 (한국세라믹기술원 이천분원 도자융합소재기술센터) ;
  • 김응수 (한국세라믹기술원 이천분원 도자융합소재기술센터) ;
  • 김진호 (한국세라믹기술원 이천분원 도자융합소재기술센터)
  • Received : 2023.06.05
  • Accepted : 2023.07.08
  • Published : 2023.07.27

Abstract

Porous ceramics are used in various industrial applications based on their physical properties, including isolation, storage, and thermal barrier properties. However, traditional manufacturing environments require additional steps to control artificial pores and limit deformities, because they rely on limited molding methods. To overcome this drawback, many studies have recently focused on fabricating porous structures using additive manufacturing techniques. In particular, the binder jet technology enables high porosity and various types of designs, and avoids the limitations of existing manufacturing processes. In this study, we investigated process optimization for manufacturing porous ceramic filters using the binder jet technology. In binder jet technology, the flowability of the powder used as the base material is an important factor, as well as compatibility with the binder in the process and for the final print. Flow agents and secondary binders were used to optimize the flowability and compatibility of the powders. In addition, the effects of the amount of added glass frit, and changes in sintering temperature on the microstructure, porosity and mechanical properties of the final printed product were investigated.

Keywords

Acknowledgement

This work was supported by Materials and Component Technology Development Program (20010483, Key technology development of porcelain ceramic with high energy efficiency) funded by the Ministry of Trade, Industry and Energy, and Ceramic Strategy Technology Development Project (KPP21007) supported by Korea Institute of Ceramic Engineering and Technology (KICET).

References

  1. I. Nittleship, Key Eng. Mater., 122-124, 305 (1996).  https://doi.org/10.4028/www.scientific.net/KEM.122-124.305
  2. S. Deville, Adv. Eng. Mater., 10, 115 (2008). 
  3. A. Julbe, D. Farrusseng and C. Guizard, J. Membr. Sci., 181, 3 (2001). 
  4. Q. F. Bao, W. X. Dong, J. E. Zhou, Y. Q. Wang and Y. Liu, Key Eng. Mater., 655, 97 (2015).  https://doi.org/10.4028/www.scientific.net/KEM.655.97
  5. I. Y. Guzman, Glass Ceram., 60, 280 (2003). 
  6. P. M. Fan, K. F. Zhen, Z. Y. Zan, Z. Chao, Z. Jian and Z. Yun, Chem. Eng. Trans., 55, 277 (2016). 
  7. J. M. Villora, P. Callejas, M. F. Barba and C. Baudin, J. Eur. Ceram. Soc., 24, 589 (2004). 
  8. T. Isobe, Y. Kameshima, A. Nakajima, K. Okada and Y. Hotta, J. Eur. Ceram. Soc., 26, 2213 (2006). 
  9. E. C. Hammel, O. L. R. Ighodaro and O. I. Okoli, Ceram. Int., 40, 15351 (2014). 
  10. D. M. Liu, Ceram. Int., 24, 441 (1998). 
  11. R. K. Nishihora, P. L. Rachadel, M. G. N. Quadri and D. Hotza, J. Eur. Ceram. Soc., 38, 988 (2018). 
  12. M. Takahashi, R. L. Menchavez, M. Fuji and H. Takegami, J. Eur. Ceram. Soc., 29, 823 (2009). 
  13. M. Attaran, Bus. Horiz., 60, 677 (2017).  https://doi.org/10.1016/j.bushor.2017.05.011
  14. N. Guo and M. C. Leu, Front. Mech. Eng., 8, 215 (2013). 
  15. Z. Chen, J. Li, C. Liu, Y. Liu, J. Zhu and C. Lao, Ceram. Int., 45, 11549 (2019). 
  16. F. Verga, M. Borlaf, L. Conti, K. Florio, M. Vetterli, T. Graule, M. Schmid and K. Wegener, Addit. Manuf., 31, 100959 (2020). 
  17. J. G. Gutierrez, S. Cano, S. Schuschnigg, C. Kukla, J. Sapkota and C. Holzer, Materials, 11, 840 (2018). 
  18. B. Zhang, X. Pei, P. Song, H. Sun, H. Li, Y. Fan, Q. Jiang, C. Zhou and X. Zhang, Composites, Part B, 155, 112 (2018). 
  19. J. A. Gonzalez, J. Mireles, Y. Lin and R. B. Wicker, Ceram. Int., 42, 10559 (2016). 
  20. M. Ziaee and N. B. Crane, Addit. Manuf., 28, 781 (2019). 
  21. X. Lv, F. Ye, L. Cheng, S. Fan and Y. Liu, Ceram. Int., 45, 12609 (2019). 
  22. H. Seitz, W. Rieder, S. Irsen, B. Leukers and C. Tille, J. Biomed. Mater. Res., Part B, 74, 782 (2005). 
  23. C. Dong, Ph. D. Thesis, p. 22, Massachusetts Institute of Technology, Cambridge, MA (1990). 
  24. W. Du, X. Ren, C. Ma and Z. Pei, in Proceedings of the ASME 2017 International Mechanical Engineering Congress and Exposition (Tampa, Florida, USA, November 3-9, 2017) V014T07A006. 
  25. Y. Bai, G. Wagner and C. B. Williams, 2015 International Solid Freeform Fabrication Symposium, University of Texas at Austin (2015). 
  26. Z. He, T. S. Shanmugasundaram and G. Singh, Prog. Addit. Manuf., 3, 215 (2018). 
  27. L. C. Hwa, M. B. Uday, N. Ahmad, A. M. Noor, S. Rajoo and K. B. Zakaria, Mater. Today Commun., 15, 134 (2018). 
  28. G. Brunello, S. Sivolella, R. Meneghello, L. Ferroni, C. Gardin, A. Piattelli, B. Zavan and E. Bressan, Biotechnol. Adv., 34, 740 (2016). 
  29. D. Ke and S. Bose, Addit. Manuf., 22, 111 (2018). 
  30. A. Butscher, M. Bohner, C. Roth, A. Ernstberger, R. Heuberger, N. Doebelin. P. R. Von Rohr and R. Muller, Acta Biomater., 8, 373 (2012). 
  31. A. Butscher, M. Bohner, S. Hofmann, L. Gauckler and R. Muller, Acta Biomater., 7, 907 (2011). 
  32. H. Miyanaji, M. Orth, J. M. Akbar and Y. Li, Front. Mech. Eng., 13, 504 (2018). 
  33. F. Wang, D. Yao, Y. Xia, K. Zuo, J. Xu and Y. Zeng, Ceram. Int., 42, 4526 (2016). 
  34. J. Xie, H. Zhang, Y. Shao, D. Bao, H. Zhang and J. Zhu, Coatings, 10, 977 (2020). 
  35. S. Gaydardzhiev and P. Ay, J. Mater. Sci., 41, 5257 (2006). 
  36. X. Xie and V. M. Puri, Adv. Powder Technol., 23, 1 (2012). 
  37. Q. Li, V. Rudolph, B. Weigl and A. Earl, Int. J. Pharm., 280, 77 (2004). 
  38. J. Fu, M. Krantz, H. Zhang, J. Zhu, H. Kuo, Y. M. Wang and K. Lis, Powder Technol., 211, 38 (2011). 
  39. S. C. Cox, J. A. Thornby, G. J. Gibbons, M. A. Williams and K. K. Mallick, Mater. Sci. Eng., C, 47, 237 (2015). 
  40. P. Shakor, S. Nejadi, G. Paul and J. Sanjayan, Autom. Constr., 110, 102964 (2020). 
  41. P. N. Shakor, Ph. D. Thesis, p. 178, Technology Sydney University, Australia (2019). 
  42. R. Melcher, Ph. D. Thesis, p. 89, Universitat Erlangen-Nurnberg, Erlangen, Germany (2009). 
  43. W. E. Mahmoud, M Hafez, N. A. El-Aal and F. El-Tantawy, Polym. Int., 57, 35 (2008). 
  44. Q. Wang, Q. Li, M. Yasir Akram, S. Ali, J. Nie and X. Zhu, Langmuir, 15700, 34 (2018). 
  45. X. Liu, X. Zhang, K. Long, X. Zhu, J. Yang, Y. Wu, S. Luo and S. Yang, in Proceedings of 2012 International Conference on Biobase Material Science and Engineering (Changsha, China, 2012) p.108.